Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 233 Accesses

Abstract

Although the existence of Dark Matter (DM) is well-established to explain a range of astrophysical and cosmological measurements, its nature and particle properties still remain one of the greatest unsolved puzzles of particle and astroparticle physics (Bertone and Hooper, Phys Rept 405:279 (2005), [1]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In QCD there could be a violation of CP symmetry in the strong interactions not observed in nature. As there is no known reason for it to be conserved in QCD specifically, this is a “fine tuning” problem known as the strong CP problem.

  2. 2.

    In NWA the integral of the square propagator \(\int \frac{\text {d}s}{(s-M_{med}^2)^2+M_{med}\Gamma ^2} = \frac{\pi }{M_{med}\Gamma }\) is non-zero only for a small region of s, where the PDFs can be taken as constant.

  3. 3.

    The mediator is assumed to not couple with the leptons to avoid the tight limits set by the dilepton searches.

References

  1. G. Bertone, D. Hooper, J. Silk, Particle dark matter: evidence, candidates and constraints. Phys. Rept. 405, 279 (2005). [hep-ph/0404175]

    Article  ADS  Google Scholar 

  2. G. Lemaitre, A homogeneous universe of constant mass and growing radius accounting for the radial velocity of extragalactic nebulae. Annales Soc. Sci. Brux. Ser. I Sci. Math. Astron. Phys. A 47, 49 (1927)

    Google Scholar 

  3. E. Hubble, A relation between distance and radial velocity among extra-galactic nebulae. Proc. Nat. Acad. Sci. 15, 168 (1929)

    Article  ADS  MATH  Google Scholar 

  4. R. Adam et al., [Planck Collaboration], Planck 2015 results. I. Overview of products and scientific results, arXiv:1502.01582 [astro-ph.CO]

  5. L. Bergström, Non-baryonic dark matter: observational evidence and detection methods. Rept. Prog. Phys. 63, 793 (2000)

    Article  ADS  Google Scholar 

  6. Planck Collaboration, Multimedia Gallery of Planck, url: http://www.cosmos.esa.int/web/planck/picture-gallery

  7. D. Hooper, Particle Dark Matter, arXiv:0901.4090 [hep-ph]

  8. K. Griest, D. Seckel, Three exceptions in the calculation of relic abundances. Phys. Rev. D 43, 3191 (1991)

    Article  ADS  Google Scholar 

  9. G. Jungman, M. Kamionkowski, K. Griest, Supersymmetric dark matter. Phys. Rept. 267, 195 (1996)

    Article  ADS  Google Scholar 

  10. P. Salati, Quintessence and the relic density of neutralinos. Phys. Lett. B 571, 121 (2003)

    Article  ADS  Google Scholar 

  11. F. Zwicky, Die Rotverschiebung von extragalaktischen Nebeln. Helv. Phys. Acta 6, 110 (1933)

    ADS  MATH  Google Scholar 

  12. K.G. Begeman, A.H. Broeils, R.H. Sanders, Extended rotation curves of spiral galaxies: dark haloes and modified dynamics. Mon. Not. Roy. Astron. Soc. 249, 523 (1991)

    Article  ADS  Google Scholar 

  13. NASA, ESA, D. Coe, Detailed Dark Matter Map Yields Clues to Galaxy Cluster Growth, http://www.nasa.gov/mission_pages/hubble/science/dark-matter-map.html

  14. NASA Chandra X-ray Observatory, NASA Finds Direct Proof of Dark Matter, http://chandra.harvard.edu/press/06_releases/press_082106.html

  15. D. Clowe, M. Bradac, A.H. Gonzalez, M. Markevitch, S.W. Randall, C. Jones, D. Zaritsky, A direct empirical proof of the existence of dark matter. Astrophys. J. 648, L109 (2006)

    Article  ADS  Google Scholar 

  16. K.A. Olive et al., (Particle Data Group), 2015 review of particle physics. J. Chin. Phys. C, 38, 090001 (2014) and 2015 update

    Google Scholar 

  17. N. Aghanim et al., [Planck Collaboration], Planck 2015 results. XI. CMB power spectra, likelihoods, and robustness of parameters, arXiv:1507.02704 [astro-ph.CO]

  18. S. Dodelson, L.M. Widrow, Sterile-neutrinos as dark matter. Phys. Rev. Lett. 72, 17 (1994)

    Article  ADS  Google Scholar 

  19. A. Kusenko, Sterile neutrinos: the dark side of the light fermions. Phys. Rept. 481, 1 (2009), arXiv:0906.2968 [hep-ph]

  20. K.N. Abazajian et al., Light Sterile Neutrinos: A White Paper, arXiv:1204.5379 [hep-ph]

  21. R.D. Peccei, H.R. Quinn, Phys. Rev. Lett. 38, 1440 (1977). doi:10.1103/PhysRevLett.38.1440

    Article  ADS  Google Scholar 

  22. P. Sikivie, Axion Cosmology. Lect. Notes Phys. 741, 19 (2008), arXiv:astro-ph/0610440

  23. E. Di Valentino, E. Giusarma, M. Lattanzi, A. Melchiorri, O. Mena, Axion cold dark matter: status after Planck and BICEP2. Phys. Rev. D 90(4), 043534 (2014), arXiv:1405.1860 [astro-ph.CO]

  24. J.L. Feng, Dark matter candidates from particle physics and methods of detection. Ann. Rev. Astron. Astrophys. 48, 495 (2010), arXiv:1003.0904 [astro-ph.CO]

  25. T. Marrodan Undagoitia, L. Rauch, Dark matter direct-detection experiments. J. Phys. G 43(1), 013001 (2016), arXiv:1509.08767 [physics.ins-det]

  26. R. Bernabei, P. Belli, F. Cappella et al., Final model independent result of DAMA/LIBRA-phase1. Eur. Phys. J. C 73(12), 2648 (2013)

    Google Scholar 

  27. C.E. Aalseth et al., [CoGeNT Collaboration], CoGeNT: a search for low-mass dark matter using p-type point contact germanium detectors. Phys. Rev. D 88(1), 012002 (2013)

    Google Scholar 

  28. R. Agnese et al., [CDMS Collaboration], Silicon detector dark matter results from the final exposure of CDMS II. Phys. Rev. Lett. 111(25), 251301 (2013)

    Google Scholar 

  29. D.S. Akerib et al., [LUX Collaboration], Results on the spin-dependent scattering of weakly interacting massive particles on nucleons from the run 3 data of the LUX experiment. Phys. Rev. Lett. 116(16), 161302 (2016), arXiv:1602.03489 [hep-ex]

  30. E. Aprile et al., [XENON100 Collaboration], Limits on spin-dependent WIMP-nucleon cross sections from 225 live days of XENON100 data. Phys. Rev. Lett. 111(2), 021301 (2013), arXiv:1301.6620 [astro-ph.CO]

  31. C. Amole et al., [PICO Collaboration], Dark matter search results from the PICO-60 CF\(_3\)I bubble chamber. Phys. Rev. D 93(5), 052014 (2016), arXiv:1510.07754 [hep-ex]

  32. C. Amole et al., [PICO Collaboration], Improved dark matter search results from PICO-2L Run 2. Phys. Rev. D 93(6), 061101 (2016), arXiv:1601.03729 [astro-ph.CO]

  33. M. Klasen, M. Pohl, G. Sigl, Indirect and direct search for dark matter. Prog. Part. Nucl. Phys. 85, 1 (2015), arXiv:1507.03800 [hep-ph]

  34. M.G. Aartsen et al., [IceCube Collaboration], Search for dark matter annihilations in the Sun with the 79-string IceCube detector. Phys. Rev. Lett. 110(13), 131302 (2013)

    Google Scholar 

  35. T. Tanaka et al., [Super-Kamiokande Collaboration], An Indirect Search for WIMPs in the Sun using 3109.6 days of upward-going muons in Super-Kamiokand. Astrophys. J. 742, 78 (2011), arXiv:1108.3384 [astro-ph.HE]

  36. M. Ackermann et al., [Fermi LAT Collaboration], Searches for cosmic-ray electron anisotropies with the Fermi Large Area Telescope. Phys. Rev. D 82, 092003 (2010)

    Article  ADS  Google Scholar 

  37. F. Calore, I. Cholis, C. Weniger, Background model systematics for the Fermi GeV excess. JCAP 1503, 038 (2015), arXiv:1409.0042 [astro-ph.CO]

  38. A. Abramowski et al., [H.E.S.S. Collaboration], Search for dark matter annihilation signatures in H.E.S.S. observations of Dwarf Spheroidal Galaxies. Phys. Rev. D 90, 112012 (2014), arXiv:1410.2589 [astro-ph.HE]

  39. H. Abdallah et al., [HESS Collaboration], Search for dark matter annihilations towards the inner Galactic halo from 10 years of observations with H.E.S.S. Phys. Rev. Lett. 117(11), 111301 (2016), arXiv:1607.08142 [astro-ph.HE]

  40. O. Adriani et al., PAMELA collaboration. Nature 458, 607 (2009)

    Article  ADS  Google Scholar 

  41. M. Di Mauro, F. Donato, N. Fornengo, R. Lineros, A. Vittino, Interpretation of AMS-02 electrons and positrons data. JCAP 1404, 006 (2014), arXiv:1402.0321 [astro-ph.HE]

  42. L. Evans, P. Bryant, LHC machine. JINST 3, S08001 (2008)

    Article  ADS  Google Scholar 

  43. G. Aad et al., ATLAS Collaboration, The ATLAS Experiment at the CERN Large Hadron Collider. JINST 3, S08003 (2008)

    Article  ADS  Google Scholar 

  44. ATLAS Collaboration, Search for new phenomena in final states with an energetic jet and large missing transverse momentum in \(pp\) collisions at \(\sqrt{s}=8\text{TeV}\) with the ATLAS detector. Eur. Phys. J. C 75(7), 299 (2015). Erratum: [Eur. Phys. J. C 75(9), 408 (2015)], arXiv:1502.01518 [hep-ex]

  45. J. Goodman, M. Ibe, A. Rajaraman, W. Shepherd, T.M.P. Tait, H.B. Yu, Constraints on dark matter from colliders. Phys. Rev. D 82, 116010 (2010), arXiv:1008.1783 [hep-ph]

  46. G. Busoni, A. De Simone, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC. Phys. Lett. B 728, 412 (2014), arXiv:1307.2253 [hep-ph]

  47. G. Busoni, A. De Simone, J. Gramling, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC, Part II: complete analysis for the \(s\)-channel. JCAP 1406, 060 (2014), arXiv:1402.1275 [hep-ph]

  48. G. Busoni, A. De Simone, T. Jacques, E. Morgante, A. Riotto, On the validity of the effective field theory for dark matter searches at the LHC part III: analysis for the \(t\)-channel. JCAP 1409, 022 (2014), arXiv:1405.3101 [hep-ph]

  49. J. Abdallah et al., Simplified models for dark matter searches at the LHC. Phys. Dark Univ. 9–10, 8 (2015), arXiv:1506.03116 [hep-ph]

  50. D. Abercrombie et al., Dark Matter Benchmark Models for Early LHC Run-2 Searches: Report of the ATLAS/CMS Dark Matter Forum, arXiv:1507.00966 [hep-ex]

  51. G. Arcadi, Y. Mambrini, M.H.G. Tytgat, B. Zaldivar, Invisible \(Z^\prime \) and dark matter: LHC vs LUX constraints. JHEP 1403, 134 (2014), arXiv:1401.0221 [hep-ph]

  52. O. Lebedev, Y. Mambrini, Axial dark matter: the case for an invisible \(Z^{\prime }\). Phys. Lett. B 734, 350 (2014), arXiv:1403.4837 [hep-ph]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliano Gustavino .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gustavino, G. (2017). The Dark Matter Paradigm. In: Search for New Physics in Mono-jet Final States in pp Collisions . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-58871-1_4

Download citation

Publish with us

Policies and ethics