Skip to main content

Classical-Level Background Independence and the Problem of Time. i. Time and Configuration

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3598 Accesses

Abstract

This and the next chapter consider Background Independence features at the classical level; difficulties arising with formulating physics in this way constitute the Problem of Time. These are the main topics that the rest of this book expands upon, by which this chapter is essential preliminary reading for all subsequent chapters bar Chap. 11. The above-mentioned difficulties are indeed due to different physical paradigms having distinct conceptualizations of time, space, spacetime, frames, observers, clocks, and ‘rods’, which we laid out in Chaps. 1 to 8. The current chapter’s approach is from points of view in which space, configuration space or dynamics are primary. Isham and Kuchař moreover gave a conceptual classification of such differences as Problem of Time facets; the below enumeration follows an updated version of this emphasizing the Background Independence aspect underlying each facet.

  1. 1)

    The Temporal Relationalism aspect of Background Independence is that there is no time for the universe as a whole at the primary level. This is implemented by e.g. reparametrization-invariant actions along the lines of Jacobi’s principle. Constraints quadratic in the momenta ensue; for general relativity, this returns the Hamiltonian constraint. This starts to answer Wheeler’s question about first principles for the particular form taken by this important constraint, which, moreover, provides a timeless alias frozen wave equation at the quantum level: the Frozen Formalism facet of the Problem of Time. We also delineate strategies for this problem involving finding a hidden time, appending a matter time, or obtaining an emergent Machian time.

  2. 2)

    The Configurational Relationalism aspect of Background Independence incorporates a physically irrelevant group of transformations – spatial and/or internal—acting on the system’s configuration space. This generalizes Wheeler’s Thin Sandwich interpretation of general relativity, which encounters the Thin Sandwich Problem facet of the Problem of Time. We proceed via an intermediate generalization of Barbour’s—Best Matching—which produces constraints linear in the momenta. (The thin sandwich equation itself is a particular form for general relativity’s momentum constraint.) Minisuperspace—the spatially homogeneous simplification of general relativity often used as a model arena—cannot model this aspect, motivating our introduction of another model arena: relational mechanics.

  3. 3)

    With Temporal and Configurational Relationalism both producing constraints, it is crucial to test that these are consistent and whether they require further constraints to close as an algebraic structure. In this way, Constraint Closure enters as the third aspect of Background Independence; the tests in question are conducted with the Dirac algorithm; problems arising thus constitute the Constraint Closure Problem facet of the Problem of Time.

  4. 4)

    Furthermore, quantities which brackets-commute with the constraints play a distinguished role; these are observables (or beables). Assignment of Observables (or Beables) is the fourth aspect of Background Independence. Difficulties with this—known to occur especially in gravitational theory—comprise the Problem of Observables (or Beables) facet of the Problem of Time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Sects. 11.111.2 and 11.6 for these other approaches toward Quantum Gravity’s own most significant precursor papers.

  2. 2.

    As regards other names, ‘Quantum GR’ will not do in this role due to implying the specific Einstein field equations. Contrast with how the Quantum Gestalt position remains open-minded as to which Relativistic Theory of Gravitation is involved. Quantum Gestalt is also in contradistinction to ‘Background Independent Quantum Gravity’. This is since the latter may carry connotations that the Background Independent and Gravitational inputs are separate rather than part of a coherent whole, whose classical counterpart—GR—already forms such a coherent whole.

  3. 3.

    Here indices \(I, J\) run over 1 to \(N\) (particle number), indices \(i\) run over 1 to \(d\) (spatial dimension) and \(m_{I}\) are the particles’ masses.

  4. 4.

    Chapter 12 outlines various other answers, which constitute distinct strategies for addressing the Frozen Formalism Problem.

  5. 5.

    In this book, given a time variable \(t\), its calendar year zero adjusted version \(t - t(0)\) is denoted by the corresponding oversized \(t\).

  6. 6.

    The name and concept of Gauge Theory is used here in a somewhat broader manner than that of Particle Physics, covering also e.g. Molecular Physics [624] and cosmological perturbations [110, 671].

  7. 7.

    The overline denotes densitization, i.e. inclusion of a factor of \(\sqrt{ \mbox{h}}\), which in the current case resides in \(\mathbf{M}\).

  8. 8.

    In RPMs, linear constraints and inhomogeneities are logically-independent features. This is in contrast with the Minisuperspace version, in which both are concurrently trivialized by homogeneity rendering the spatial derivative operator \(\mathcal{D}_{i}\) meaningless.

  9. 9.

    Many of these are quantum-level approaches, for which the motivation is stronger, as further detailed in Chaps. 12, 26 and 51).

  10. 10.

    Field Theory constraint algebraic structures are most usefully presented in terms of smearing functions, as explained in footnote 1; the undefined symbols in this Sec’s presentations of Electromagnetism, Yang–Mills Theory and GR are just such smearings.

  11. 11.

    See Appendix V.6 and [154] if interested in algebroids in general or the Dirac algebroid in particular. Hitherto this has usually been called ‘Dirac algebra’, though ‘Dirac algebroid’ is both more mathematically correct and not open to confusion with fermionic theory’s Dirac algebra (6.9). Moreover, the Dirac algebroid is manifested even in Minkowski spacetime \(\mathbb{M}^{n}\), upon considering arbitrary spatial hypersurfaces therein [250]; these correspond to fleets of arbitrarily accelerating observers.

  12. 12.

    Moreover, this generalization does not concern a change of definition, but is rather a more inclusive context in which the entities are interpreted. The term ‘beables’ was originally coined by physicist John Bell [126, 127]. Both his and the Author’s use of this word extend to include realist interpretations of QM. However, our uses differ as to what ‘realist interpretations’ we wish to include; most of those from Bell’s day have ceased to be tenable positions, with the ones I discuss specifically in Part III being largely conceptually and technically unrelated to these earlier uses (Sect. 50.4). To a lesser extent, classical whole-universe modelling also motivates use of the beables concept. Finally note that these two motivations combine further in the arena of Quantum Cosmology.

References

  1. Anderson, E.: Leibniz–Mach foundations for GR and fundamental physics. In: Reimer, A. (ed.) Progress in General Relativity and Quantum Cosmology Research. Nova, New York (2005). gr-qc/0405022

    Google Scholar 

  2. Anderson, E.: The problem of time in quantum gravity. In: Frignanni, V.R. (ed.) Classical and Quantum Gravity: Theory, Analysis and Applications. Nova, New York (2012). arXiv:1009.2157

    Google Scholar 

  3. Anderson, E.: Problem of time in quantum gravity. Ann. Phys. 524, 757 (2012). arXiv:1206.2403

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, E.: Relational quadrilateralland. I. The classical theory. Int. J. Mod. Phys. D 23, 1450014 (2014). arXiv:1202.4186

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Anderson, E.: The problem of time and quantum cosmology in the relational particle mechanics arena. arXiv:1111.1472

  6. Anderson, E.: Background independence. arXiv:1310.1524

  7. Anderson, E.: Problem of time and background independence: the individual facets. arXiv:1409.4117

  8. Anderson, E.: Configuration spaces in fundamental physics. arXiv:1503.01507

  9. Anderson, E., Mercati, F.: Classical machian resolution of the spacetime construction problem. arXiv:1311.6541

  10. Arnol’d, V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1978)

    Book  Google Scholar 

  11. Arnowitt, R., Deser, S., Misner, C.W.: The dynamics of general relativity. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962). arXiv:gr-qc/0405109

    Google Scholar 

  12. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004). gr-qc/0404018

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Baierlein, R.F., Sharp, D.H., Wheeler, J.A.: Three-dimensional geometry as carrier of information about time. Phys. Rev. 126, 1864 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Barbour, J.B.: Absolute or Relative Motion? Vol 1: The Discovery of Dynamics. Cambridge University Press, Cambridge (1989)

    MATH  Google Scholar 

  15. Barbour, J.B.: The timelessness of quantum gravity. I. The evidence from the classical theory. Class. Quantum Gravity 11, 2853 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  16. Barbour, J.B.: GR as a perfectly machian theory. In: Barbour, J.B., Pfister, H. (eds.) Mach’s Principle: From Newton’s Bucket to Quantum Gravity. Birkhäuser, Boston (1995)

    Google Scholar 

  17. Barbour, J.B.: The End of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  18. Barbour, J.B.: Scale-invariant gravity: particle dynamics. Class. Quantum Gravity 20, 1543 (2003). gr-qc/0211021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Barbour, J.B.: Shape dynamics. An introduction. In: Proceedings of the Conference Quantum Field Theory and Gravity, Regensburg (2010). arXiv:1105.0183

    Google Scholar 

  20. Barbour, J.B., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382, 295 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Barbour, J.B., Foster, B.Z., ó Murchadha, N.: Relativity without relativity. Class. Quantum Gravity 19, 3217 (2002). gr-qc/0012089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Bardeen, J.: Gauge-invariant cosmological perturbations. Phys. Rev. D 22, 1882 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bartnik, R., Fodor, G.: On the restricted validity of the thin-sandwich conjecture. Phys. Rev. D 48, 3596 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  24. Belasco, E.P., Ohanian, H.C.: Initial conditions in general relativity: lapse and shift formulation. J. Math. Phys. 10, 1503 (1969)

    Article  ADS  MathSciNet  Google Scholar 

  25. Bell, J.S.: Quantum mechanics for cosmologists. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2. A Second Oxford Symposium. Clarendon, Oxford (1981)

    Google Scholar 

  26. Bell, J.S.: The theory of local beables. In: Speakable and Unspeakable in Quantum Mechanics, p. 52. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  27. Blyth, W.F., Isham, C.J.: Quantization of a Friedmann universe filled with a scalar field. Phys. Rev. D 11, 768 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  28. Bojowald, M.: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  29. Butterfield, J.N., Isham, C.J.: Spacetime and the philosophical challenge of quantum gravity. In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale. Cambridge University Press, Cambridge (2000). gr-qc/9903072

    Google Scholar 

  30. Carlip, S.: Quantum gravity: a progress report. Rep. Prog. Phys. 64, 885 (2001). gr-qc/0108040

    Article  ADS  MathSciNet  Google Scholar 

  31. Carlip, S.: Challenges for emergent gravity. arXiv:1207.2504

  32. DeWitt, B.S.: Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160, 1113 (1967)

    Article  ADS  MATH  Google Scholar 

  33. DeWitt, B.S.: Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev. 160, 1195 (1967)

    Article  ADS  MATH  Google Scholar 

  34. DeWitt, B.S.: Quantum theory of gravity. III. Applications of the covariant theory. Phys. Rev. 160, 1239 (1967)

    Article  ADS  MATH  Google Scholar 

  35. Dirac, P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Dirac, P.A.M.: The Hamiltonian form of field dynamics. Can. J. Math. 3, 1 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  37. Dirac, P.A.M.: The theory of gravitation in Hamiltonian form. Proc. R. Soc. Lond. A 246, 333 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)

    MATH  Google Scholar 

  39. Einstein, A.: Lecture before the Prussian Academy of Sciences, 27 January 1921

    Google Scholar 

  40. Einstein, A.: Dialogue about objections to the theory of relativity. Naturwissenschaften 6, 697 (1918); An English translation is available in Janssen et al. (2002)

    Article  ADS  Google Scholar 

  41. Fierz, M., Pauli, W.: On relativistic wave equations for particles of arbitrary spin in an electromagnetic field. Proc. R. Soc. Lond. A 173, 211 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Goldstein, H.: Classical Mechanics. Addison–Wesley, Reading (1980)

    MATH  Google Scholar 

  43. Hájíček, P.: Group quantization of parametrized systems I. Time levels. J. Math. Phys. 36, 4612 (1996). gr-qc/9412047

    Article  MathSciNet  MATH  Google Scholar 

  44. Hájíček, P., Isham, C.J.: Perennials and the group-theoretical quantization of a parametrized scalar field on a curved background. J. Math. Phys. 37, 3522 (1996). gr-qc/9510034

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Hartle, J.B., Hawking, S.W.: Wave function of the universe. Phys. Rev. D 28, 2960 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Hawking, S.W., Ellis, G.F.R.: The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973)

    Book  MATH  Google Scholar 

  47. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  48. Hojman, S.A., Kuchař, K.V., Teitelboim, C.: Geometrodynamics regained. Ann. Phys. (N. Y.) 96, 88 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Isenberg, J., Wheeler, J.A.: Inertia here is fixed by mass-energy there in every W model universe. In: Pantaleo, M., de Finis, F. (eds.) Relativity, Quanta and Cosmology in the Development of the Scientific Thought of Albert Einstein. Johnson, New York (1979)

    Google Scholar 

  50. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011

    Google Scholar 

  51. Isham, C.J.: Prima facie questions in quantum gravity. In: Lect. Notes Phys., vol. 434. (1994). gr-qc/9310031

    Google Scholar 

  52. Isham, C.J.: Structural issues in quantum gravity. In: Francaviglia, M., Longhi, G., Lusanna, L., Sorace, E. (eds.) General Relativity and Gravitation 14: Proceedings. World Scientific, Singapore (1997). gr-qc/9510063

    Google Scholar 

  53. Jammer, M.: Concepts of Space. The History of Theories of Space in Physics, 3rd, enlarged edn. Dover, New York (1993). Foreword by A. Einstein

    Google Scholar 

  54. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  55. Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  56. Kuchař, K.V.: On equivalence of parabolic and hyperbolic superHamiltonians. J. Math. Phys. 19, 390 (1978)

    Article  ADS  Google Scholar 

  57. Kuchař, K.V.: Canonical methods of quantization. In: Isham, C.J., Penrose, R., Sciama, D.W. (eds.) Quantum Gravity 2: A Second Oxford Symposium. Clarendon, Oxford (1981)

    Google Scholar 

  58. Kuchař, K.V.: General relativity: dynamics without symmetry. J. Math. Phys. 22, 2640 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  59. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992); Reprinted as Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011)

    Google Scholar 

  60. Kuchař, K.V.: Canonical quantum gravity. In: Gleiser, R.J., Kozamah, C.N., Moreschi, O.M. (eds.) General Relativity and Gravitation 1992. IOP Publishing, Bristol (1993). gr-qc/9304012

    Google Scholar 

  61. Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1949)

    MATH  Google Scholar 

  62. Littlejohn, R.G., Reinsch, M.: Gauge fields in the separation of rotations and internal motions in the \(N\)-body problem. Rev. Mod. Phys. 69, 213 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  63. Misner, C.W.: Quantum cosmology. I. Phys. Rev. 186, 1319 (1969)

    Article  ADS  MATH  Google Scholar 

  64. Misner, C.W.: Minisuperspace. In: Klauder, J. (ed.) Magic Without Magic: John Archibald Wheeler. Freeman, San Francisco (1972)

    Google Scholar 

  65. Misner, C.W., Thorne, K., Wheeler, J.A.: Gravitation. Freedman, San Francisco (1973)

    Google Scholar 

  66. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  67. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  68. Mukhanov, V.F., Feldman, H.A., Brandenberger, R.H.: Theory of cosmological perturbations. Phys. Rep. 215, 203 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  69. Page, D.N.: Sensible quantum mechanics: are probabilities only in the mind? Int. J. Mod. Phys. D 5, 583 (1996). gr-qc/9507024

    Article  ADS  MathSciNet  Google Scholar 

  70. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  71. Pons, J.M., Salisbury, D.C., Sundermeyer, K.A.: Observables in classical canonical gravity: folklore demystified In: Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravity. arXiv:1001.2726

  72. Rindler, W.: Relativity. Special, General and Cosmological. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  73. Rovelli, C.: Is there incompatibility between the ways time is treated in general relativity and in standard quantum mechanics? In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, p. 126. Birkhäuser, Boston (1991)

    Google Scholar 

  74. Rovelli, C.: Loop quantum gravity. Living Rev. Relativ. 1, 1 (1998). gr-qc/9710008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  75. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  76. Smolin, L.: How far are we from the quantum theory of gravity? hep-th/0303185

  77. Smolin, L.: An invitation to loop quantum gravity. hep-th/0408048

  78. Śniatycki, J.: Dirac brackets in geometric dynamics. Ann. Inst. Henri Poincaré 20, 365 (1974)

    MathSciNet  MATH  Google Scholar 

  79. Souriau, J.M.: Structure of Dynamical Systems. A Symplectic View of Physics. Birkhäuser, Basel (1994)

    Google Scholar 

  80. Tavakol, R.K., Anderson, E.: We have time because we shall never know. arXiv:1506.07928

  81. Teitelboim, C.: How commutators of constraints reflect spacetime structure. Ann. Phys. (N. Y.) 79, 542 (1973)

    Article  ADS  Google Scholar 

  82. Thiemann, T.: Lectures on loop quantum gravity. Lect. Notes Phys. 631, 41 (2003). gr-qc/0210094

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Weinberg, S.: Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity. Wiley, New York (1972)

    Google Scholar 

  84. Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, B.S., DeWitt, C.M. (eds.) Groups, Relativity and Topology. Gordon & Breach, New York (1964)

    Google Scholar 

  85. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C., Wheeler, J.A. (eds.) Battelle Rencontres: 1967 Lectures in Mathematics and Physics. Benjamin, New York (1968)

    Google Scholar 

  86. Whitrow, G.J.: The Natural Philosophy of Time. Nelson, London (1961)

    MATH  Google Scholar 

  87. Will, S.C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014). arXiv:1403.7377

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Classical-Level Background Independence and the Problem of Time. i. Time and Configuration. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_9

Download citation

Publish with us

Policies and ethics