Time and Spacetime in General Relativity (GR)

  • Edward Anderson
Part of the Fundamental Theories of Physics book series (FTPH, volume 190)


This chapter begins consideration of foundations for general relativity. This is both a relativistic theory of gravitation and a freeing from absolute or background structures (as Chaps.  8 to  10 explain further). The latter perspective emphasizes Background Independence, a notion widely used in Quantum Gravity programs as well. Given the substantial conceptual and technical differences incurred by Background Independence, we further motivate the first—and only observationally established—seat of this—general relativity—by firstly briefly surveying observational evidence for general relativity. Secondly, by outlining useful features of some of its simpler cosmological and black hole solutions.

We then continue to discuss our preamble’s focal topics—the nature of time, space, spacetime, frames, clocks and ‘rods’—now in the context of general relativity. This chapter works in the spacetime setting (as opposed to the next chapter’s dynamical setting). On the one hand, special and general relativistic spacetimes enjoy some parallels such as similar types of notions of causality and simultaneity. On the other hand, general relativity’s Background Independence produces many difference between general relativity’s rendition of the focal topics and both Newtonian theory’s and special relativity’s. This occurs in particular through general relativity being diffeomorphism invariant, which corresponds to a far larger and more nuanced invariance group than the Lorentz and Poincaré groups of special relativity. In anticipation to Chap.  11’s introduction to Quantum Gravity, we end by outlining how general relativity points to its own limitation in the form of singularity theorems.


  1. 13.
    Anderson, J.L.: Principles of Relativity Physics. Academic Press, New York (1967) Google Scholar
  2. 74.
    Ashby, N.: Relativity in the global positioning system. Living Rev. Relativ. 6, 1 (2003) ADSCrossRefzbMATHGoogle Scholar
  3. 88.
    Bahder, T.B.: Relativity of GPS measurement. Phys. Rev. D 68, 063005 (2003). gr-qc/0306076 ADSCrossRefGoogle Scholar
  4. 122.
    Baumann, D.: TASI lectures on inflation. arXiv:0907.5424
  5. 150.
    Bohr, N., Rosenfeld, L.: Zur Frage des Messbarkeit der Electromagnetischen Feldgrössen [On the question of measurability of the electromagnetic field quantities]. K. Dan. Vidensk. 78, 94 (1933) Google Scholar
  6. 226.
    Cutler, C., Thorne, K.S.: An overview of gravitational-wave sources. In: Bishop, N.T., Maharaj, S.D. (eds.) Proceedings of GR16, Durban, South Africa, 2001 World Scientific, Singapore (2001). gr-qc/0204090 Google Scholar
  7. 278.
    Ehlers, J.: Survey of general relativity theory. In: Israel, W. (ed.) Relativity, Astrophysics and Cosmology. Reidel, Dordrecht (1973) Google Scholar
  8. 282.
    Einstein, A.: The field equations of gravitation. Preuss. Akad. Wiss. Berl. Sitzber. 844 (1915); For an English translation, see e.g. Volume 6: The Berlin Years: Writings, 1914–1917 (English translation supplement) Google Scholar
  9. 287.
    Einstein, A., Grossmann, M.: Outline of a generalized theory of relativity and of a theory of gravitation. I. Physical part by A. Einstein II. Mathematical part by M. Grossmann. Z. Math. Phys. 62, 225 (1913), 245; For a translation, see e.g. The Collected Papers of Albert Einstein, vol. 4. The Swiss Years by A. Beck and D. Howard Google Scholar
  10. 296.
    Farmer, A.J., Phinney, E.S.: The gravitational wave background from cosmological compact binaries. Mon. Not. R. Astron. Soc. 346, 1197 (2003). astro-ph/0304393 ADSCrossRefGoogle Scholar
  11. 309.
    For eLISA, ee e.g.
  12. 310.
    For pulsar ephemerides, see e.g.
  13. 365.
    Giulini, D.: Equivalence principle, quantum mechanics, and atom-interferometric tests. Talk delivered on October 1st 2010 at the Regensburg conference on Quantum Field Theory and Gravity. arXiv:1105.0749
  14. 431.
    Hartle, J.B.: Gravity: An Introduction to Einstein’s General Relativity. Addison–Wesley, San Francisco (2003) Google Scholar
  15. 440.
    Hawking, S.W., Ellis, G.F.R.: The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge (1973) CrossRefzbMATHGoogle Scholar
  16. 483.
    Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011 Google Scholar
  17. 521.
    Jammer, M.: Concepts of Simultaneity. From Antiquity to Einstein and Beyond. Johns Hopkins University Press, Baltimore (2006) Google Scholar
  18. 523.
    Jantzen, R.: The dynamical degrees of freedom in spatially homogeneous cosmology. Commun. Math. Phys. 64, 211 (1979) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. 569.
    Kowalski, M., Rubin, D., et al.: Improved cosmological constraints from new, old and combined supernova datasets. Astrophys. J. 686, 749 (2008). arXiv:0804.4142 ADSCrossRefGoogle Scholar
  20. 595.
    Lachièze-Rey, M.: Space and observers in cosmology. Astron. Astrophys. 376, 17 (2001). gr-qc/0107010 ADSCrossRefzbMATHGoogle Scholar
  21. 596.
    Lachièze-Rey, M.: In search of relativistic time. arXiv:1312.2866
  22. 629.
    Lovelock, D.: The Einstein tensor and its generalizations. J. Math. Phys. 12, 498 (1971) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  23. 632.
    Mach, E.: Die Mechanik in ihrer Entwickelung, Historisch-kritisch dargestellt. Barth, Leipzig (1883); An English translation is The Science of Mechanics: A Critical and Historical Account of Its Development. Open Court, La Salle (1960) zbMATHGoogle Scholar
  24. 645.
    Marzke, R.F., Wheeler, J.A.: Gravitation as geometry—I: the geometry of the space-time and the geometrodynamical standard meter. In: Chiu, H.Y., Hoffman, W.F. (eds.) Gravitation and Relativity. Benjamin, New York (1964) Google Scholar
  25. 660.
    Misner, C.W., Thorne, K., Wheeler, J.A.: Gravitation. Freedman, San Francisco (1973) Google Scholar
  26. 666.
    Morris, M.S., Thorne, K.S.: Wormholes in spacetime and their use for interstellar travel: a tool for teaching general relativity. Am. J. Phys. 56, 395 (1988) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  27. 669.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008) Google Scholar
  28. 670.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010) Google Scholar
  29. 700.
    Pauli, W.: Schlusswort durch den Präsidenten der Konferenz [Opening talk]. Helv. Phys. Acta Suppl. 4, 261 (1955) Google Scholar
  30. 730.
    Reichenbach, H.: The Philosophy of Space and Time. Dover, New York (1950) zbMATHGoogle Scholar
  31. 736.
    Rindler, W.: Relativity. Special, General and Cosmological. Oxford University Press, Oxford (2001) zbMATHGoogle Scholar
  32. 763.
    Sathyaprakash, B.S., Schutz, B.F.: Physics, astrophysics and cosmology with gravitational waves. Living Rev. Relativ. 12, 2 (2009). arXiv:0903.0338 ADSCrossRefzbMATHGoogle Scholar
  33. 776.
    Schneider, P., Ehlers, J., Falco, E.: Gravitational Lenses. Springer, Berlin (1992) Google Scholar
  34. 779.
    Schrödinger, E.: Space-Time Structure. Cambridge University Press, Cambridge (1950) zbMATHGoogle Scholar
  35. 784.
    Senovilla, J.M.M., Garfinkle, D.: The 1965 Penrose singularity theorem. arXiv:1410.5226
  36. 812.
    Stephani, H., Kramer, D., MacCallum, M.A.H., Hoenselaers, C.A., Herlt, E.: Exact Solutions of Einstein’s Field Equations, 2nd edn. Cambridge University Press, Cambridge (2003) CrossRefzbMATHGoogle Scholar
  37. 814.
    Stewart, J.M.: Advanced General Relativity. Cambridge University Press, Cambridge (1991) CrossRefzbMATHGoogle Scholar
  38. 839.
    The LIGO Collaboration the Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 ADSCrossRefGoogle Scholar
  39. 840.
    The Planck Collaboration: Planck 2013 results. XVI. Cosmological parameters. Astron. Astrophys. 571, A16 (2014). arXiv:1303.5076 CrossRefGoogle Scholar
  40. 841.
    The Planck Collaboration: Planck 2013 results. XXII. Constraints on inflation. Astron. Astrophys. 571, A22 (2014). arXiv:1303.5082 CrossRefGoogle Scholar
  41. 859.
    Torretti, R.: Relativity and Geometry. Pergamon, New York (1983) zbMATHGoogle Scholar
  42. 874.
    Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984) CrossRefzbMATHGoogle Scholar
  43. 888.
    Weinberg, S.: Cosmology. Oxford University Press, New York (2008) zbMATHGoogle Scholar
  44. 897.
    Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, B.S., DeWitt, C.M. (eds.) Groups, Relativity and Topology. Gordon & Breach, New York (1964) Google Scholar
  45. 910.
    Will, S.C.M.: The confrontation between general relativity and experiment. Living Rev. Relativ. 17, 4 (2014). arXiv:1403.7377 ADSCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edward Anderson
    • 1
  1. 1.DAMTPCentre for Mathematical SciencesCambridgeUK

Personalised recommendations