Quantum Field Theory (QFT)

  • Edward Anderson
Part of the Fundamental Theories of Physics book series (FTPH, volume 190)


This chapter outlines (special-relativistic) quantum field theory, with particular emphasis on the roles played therein by time and background dependence. (Fully understanding this chapter rather probably requires having studied at least an elementary course in quantum field theory.) In particular, the current chapter shows that the Wightman axioms for quantum field theory are replete with temporal and background dependent concepts. The Lorentz group, upon which quantum field theory’s equations for each spin of particle rest, is also a background-dependent concept.

While there is some interesting contrast with the previous chapter’s account of time in nonrelativistic quantum theory, the main point of this chapter’s exposition is the differences between it and how time is conceived of in general relativity (Chaps.  7 and  8). These differences are essential preliminary reading before tackling both Chapter 11’s introduction to Quantum Gravity and Chaps.  9,  10 and  12’s introduction to this book’s main topic of the Problem of Time and its Background Independence underpinning. The current chapter also contains this book’s quantum exercises.


  1. 4.
    Alvarez-Gaumé, L., Witten, E.: Gravitational anomalies. Nucl. Phys. B 234, 269 (1984) ADSMathSciNetCrossRefGoogle Scholar
  2. 82.
    Audoin, C., Guinot, B.: The Measurement of Time. Time, Frequency and the Atomic Clock. Cambridge University Press, Cambridge (2001) Google Scholar
  3. 139.
    Bertlmann, R.A.: In: Anomalies in Quantum Field Theory. Clarendon, Oxford (1996) Google Scholar
  4. 150.
    Bohr, N., Rosenfeld, L.: Zur Frage des Messbarkeit der Electromagnetischen Feldgrössen [On the question of measurability of the electromagnetic field quantities]. K. Dan. Vidensk. 78, 94 (1933) Google Scholar
  5. 220.
    Courant, R., Hilbert, D.: Methods of Mathematical Physics, vols. 1 and 2. Wiley, Chichester (1989) CrossRefzbMATHGoogle Scholar
  6. 238.
    DeWitt, B.S.: Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev. 160, 1195 (1967) ADSCrossRefzbMATHGoogle Scholar
  7. 239.
    DeWitt, B.S.: Quantum theory of gravity. III. Applications of the covariant theory. Phys. Rev. 160, 1239 (1967) ADSCrossRefzbMATHGoogle Scholar
  8. 250.
    Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964) zbMATHGoogle Scholar
  9. 269.
    Duncan, A.: The Conceptual Framework of Quantum Field Theory. Oxford University Press, London (2012) CrossRefzbMATHGoogle Scholar
  10. 299.
    Feynman, R.P. (lecture course given in 1962–1963), published as Feynman, R.P., Morinigo, F.B., Wagner, W.G., Hatfield, B. (eds.): Feynman Lectures on Gravitation. Addison–Wesley, Reading (1995) Google Scholar
  11. 349.
    Geroch, R.P.: General Relativity from A to B. University of Chicago Press, Chicago (1978) Google Scholar
  12. 363.
    Giulini, D.: The superspace of geometrodynamics. Gen. Relativ. Gravit. 41(785), 785 (2009). arXiv:0902.3923 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. 366.
    Giulini, D., Joos, E., Kiefer, C., Kupsch, J., Stamatescu, I.-O., Zeh, H.D.: Decoherence and the Appearance of a Classical World in Quantum Theory. Springer, Berlin (1996) CrossRefzbMATHGoogle Scholar
  14. 401.
    Haag, R.: Local Quantum Physics. Springer, Berlin (1992) CrossRefzbMATHGoogle Scholar
  15. 444.
    Heisenberg, W., Pauli, W.: Zer Quantendynamik der Wellenfelder [Quantum dynamics of wave fields]. Z. Phys. 56, 1 (1929) ADSCrossRefzbMATHGoogle Scholar
  16. 471.
    Isham, C.J.: An introduction to quantum gravity. In: Isham, C.J., Penrose, R., Sciama, D. (eds.) Oxford Symposium on Quantum Gravity. Clarendon, Oxford (1975) Google Scholar
  17. 483.
    Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011 Google Scholar
  18. 487.
    Isham, C.J.: Lectures on Quantum Theory. Imperial College Press, London (1995) CrossRefzbMATHGoogle Scholar
  19. 517.
    Jammer, M.: The Philosophy of Quantum Mechanics. Wiley, New York (1974) Google Scholar
  20. 521.
    Jammer, M.: Concepts of Simultaneity. From Antiquity to Einstein and Beyond. Johns Hopkins University Press, Baltimore (2006) Google Scholar
  21. 599.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon, New York (1965) zbMATHGoogle Scholar
  22. 669.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008) Google Scholar
  23. 670.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010) Google Scholar
  24. 687.
    Osterwalder, K., Schrader, R.: Axioms for Euclidean Green’s functions II. Commun. Math. Phys. 42, 281 (1975) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. 712.
    Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Perseus Books, Reading (1995) Google Scholar
  26. 736.
    Rindler, W.: Relativity. Special, General and Cosmological. Oxford University Press, Oxford (2001) zbMATHGoogle Scholar
  27. 817.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Benjamin, New York (1964) zbMATHGoogle Scholar
  28. 838.
    The ATLAS Collaboration: Observation of a new particle in the search for the standard model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B 716, 1 (2012) ADSCrossRefGoogle Scholar
  29. 875.
    Wald, R.M.: The formulation of quantum field theory in curved spacetime. In: Rowe, D. (ed.) Proceedings of the ‘Beyond Einstein Conference’. Birkhäuser, Boston (2009). arXiv:0907.0416 Google Scholar
  30. 885.
    Weinberg, S.: The Quantum Theory of Fields. Vol. I. Foundations. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  31. 886.
    Weinberg, S.: The Quantum Theory of Fields. Vol. II. Modern Applications. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  32. 888.
    Weinberg, S.: Cosmology. Oxford University Press, New York (2008) zbMATHGoogle Scholar
  33. 931.
    Zeh, H.D.: The Physical Basis of the Direction of Time. Springer, Berlin (1989) CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edward Anderson
    • 1
  1. 1.DAMTPCentre for Mathematical SciencesCambridgeUK

Personalised recommendations