Advertisement

Time and Ordinary Quantum Mechanics (QM)

  • Edward Anderson
Chapter
Part of the Fundamental Theories of Physics book series (FTPH, volume 190)

Abstract

This chapter recollects the postulates and laws of (non-relativistic) quantum mechanics, now emphasizing in particular the forms that time, space, clocks, ‘rods’ and observers take in quantum theory. We contrast these with their classical Newtonian counterparts. In particular, quantum mechanics has distinct external, dynamical and observable notions of time. We also comment on the time–energy uncertainty principle’s unusual features. Temporal notions additionally enter the postulates of quantum mechanics, in roles such as equal-time commutation relations, measurements at a given time, and evolution. We touch upon atomic clocks, and how these and some inputs into measuring lengths, are quantum-mechanical. We finally indicate how clocks are inherently imprecise at the quantum level, and have a finite probability for occasionally running backwards.

References

  1. 81.
    Atkins, P.W., Friedman, R.S.: Molecular Quantum Mechanics. Oxford University Press, New York (1997) Google Scholar
  2. 82.
    Audoin, C., Guinot, B.: The Measurement of Time. Time, Frequency and the Atomic Clock. Cambridge University Press, Cambridge (2001) Google Scholar
  3. 160.
    Bondi, H.: Relativity. Rep. Prog. Phys. 22, 97 (1959) ADSCrossRefMATHGoogle Scholar
  4. 185.
    Busch, P.: The time–uncertainty relation, in [669] Google Scholar
  5. 269.
    Duncan, A.: The Conceptual Framework of Quantum Field Theory. Oxford University Press, London (2012) CrossRefMATHGoogle Scholar
  6. 349.
    Geroch, R.P.: General Relativity from A to B. University of Chicago Press, Chicago (1978) Google Scholar
  7. 364.
    Giulini, D.: Dynamical and Hamiltonian formulation of general relativity. In: Ashtekar, A., Petkov, V. (eds.) Springer Handbook of Spacetime. Springer, Dordrecht (2014), chapter 17. arXiv:1505.01403 Google Scholar
  8. 401.
    Haag, R.: Local Quantum Physics. Springer, Berlin (1992) CrossRefMATHGoogle Scholar
  9. 407.
    Hall, B.C.: Quantum Theory for Mathematicians. Springer, New York (2013) CrossRefMATHGoogle Scholar
  10. 475.
    Isham, C.J.: Topological and global aspects of quantum theory. In: DeWitt, B., Stora, R. (eds.) Relativity, Groups and Topology II. North-Holland, Amsterdam (1984) Google Scholar
  11. 483.
    Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011 Google Scholar
  12. 487.
    Isham, C.J.: Lectures on Quantum Theory. Imperial College Press, London (1995) CrossRefMATHGoogle Scholar
  13. 517.
    Jammer, M.: The Philosophy of Quantum Mechanics. Wiley, New York (1974) Google Scholar
  14. 556.
    Kittel, C.: Quantum Theory of Solids. Wiley, New York (1963) MATHGoogle Scholar
  15. 599.
    Landau, L.D., Lifshitz, E.M.: Quantum Mechanics. Pergamon, New York (1965) MATHGoogle Scholar
  16. 621.
    Li, R., Gibble, K., Szymaniec, K.: Improved accuracy of the NPL-CsF2 primary frequency standard: evaluation of distributed cavity phase and microwave lensing frequency shifts. Metrologia 48, 283 (2011). arXiv:1107.2412 ADSCrossRefGoogle Scholar
  17. 638.
    Markowitz, W., Hall, R.G., Essen, L., Parry, J.V.L.: Frequency of cesium in terms of ephemeris time. Phys. Rev. Lett. 1, 105 (1958) ADSCrossRefGoogle Scholar
  18. 645.
    Marzke, R.F., Wheeler, J.A.: Gravitation as geometry—I: the geometry of the space-time and the geometrodynamical standard meter. In: Chiu, H.Y., Hoffman, W.F. (eds.) Gravitation and Relativity. Benjamin, New York (1964) Google Scholar
  19. 652.
    Messiah, A.: Quantum Mechanics, vols. 1 and 2. North-Holland, Amsterdam (1965) Google Scholar
  20. 669.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008) Google Scholar
  21. 670.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010) Google Scholar
  22. 699.
    Pauli, W.: Principles of wave mechanics. In: Handbuch der Physik, vol. 24 Springer, Berlin (1933) Google Scholar
  23. 701.
    Pauli, W.: General Principles of Quantum Mechanics. Springer, Berlin (1980); English translation of work by the same publisher in 1958 CrossRefGoogle Scholar
  24. 712.
    Peskin, M.E., Schroeder, D.V.: An Introduction to Quantum Field Theory. Perseus Books, Reading (1995) Google Scholar
  25. 761.
    Salecker, H., Wigner, E.P.: Quantum limitations of the measurement of space-time distances. Phys. Rev. 109, 571 (1958) ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 817.
    Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Benjamin, New York (1964) MATHGoogle Scholar
  27. 839.
    The LIGO Collaboration the Virgo Collaboration: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016). arXiv:1602.03837 ADSCrossRefGoogle Scholar
  28. 862.
    Unruh, W.G., Wald, R.M.: Time and the interpretation of canonical quantum gravity. Phys. Rev. D 40, 2598 (1989) ADSMathSciNetCrossRefGoogle Scholar
  29. 885.
    Weinberg, S.: The Quantum Theory of Fields. Vol. I. Foundations. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  30. 886.
    Weinberg, S.: The Quantum Theory of Fields. Vol. II. Modern Applications. Cambridge University Press, Cambridge (1995) CrossRefGoogle Scholar
  31. 889.
    Weinberg, S.: Lectures on Quantum Mechanics. Cambridge University Press, Cambridge (2013) MATHGoogle Scholar
  32. 899.
    Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C., Wheeler, J.A. (eds.) Battelle Rencontres: 1967 Lectures in Mathematics and Physics. Benjamin, New York (1968) Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edward Anderson
    • 1
  1. 1.DAMTPCentre for Mathematical SciencesCambridgeUK

Personalised recommendations