Skip to main content

Geometrical Quantization with Nontrivial . ii. Field Theories and GR

  • Chapter
  • First Online:
  • 3568 Accesses

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

Abstract

We now extend our treatment of geometrical quantization to the most physically desirable case of field theories exhibiting redundant groups of transformations. Quantum field theory and general relativity are both frameworks of this kind, with Lie and diffeomorphism gauge groups respectively. We first supplement Chap. 6’s account of time and background dependence in quantum field theory by outlining some further subtleties required for Part III’s more advanced discussion of Quantum Gravity, such as topological aspects and regularization. We then consider the Dirac quantization of some whole-universe models which thus exhibit the Frozen Formalism Problem too: canonical general relativity in all of plain geometrodynamical, affine geometrodynamical and loop formulations, as well as supersymmetric model counterparts. We end by arguing that while it would be technically convenient if quantization were a functorial prescription, this is unfortunately not the case in general.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    These techniques are named after physicists Carlo Becchi, Alain Rouet, Raymond Stora and Igor Tyutin, and Igor Batalin and Grigori Vilkovisky, respectively.

  2. 2.

    This is mass-weighted area, so this is as yet another analogy between \(I\) and \(\sqrt{\mbox{h}}\).

  3. 3.

    See e.g. physicists Rodolfo Gambini and Jorge Pullin’s book [330] for a conceptually if not technically detailed account of the loop transformation underlying the loop representation. This in turn rests on loop space mathematics (outlined in Appendix N.12). See also e.g. Ashtekar and physicist Jerzy Lewandowski’s account [77] for a more rigorous treatment. It has also been determined that the loop representation works just as well for whichever value of the Barbero–Immirzi parameter \(\beta \). Thus, in particular, it works for both complex-variables and real-variables forms of Nododynamics.

  4. 4.

    For instance, one might use a framing by which loops become ribbons—a further type of regularization that is possibly more amenable to theories with metric Background Independence. This is illustrative of a main approach in freeing oneself from the consequences of loops themselves being too singular.

References

  1. Anderson, E.: Relational motivation for conformal operator ordering in quantum cosmology. Class. Quantum Gravity 27, 045002 (2010). arXiv:0905.3357

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Ashtekar, A.: Lectures on Nonperturbative Canonical Gravity. World Scientific, Singapore (1991)

    Book  MATH  Google Scholar 

  3. Ashtekar, A., Lewandowski, J.: Representation theory of analytic holonomy \(\boldsymbol{\mathfrak{C}}^{*}\) algebras. In: Baez, J.C. (ed.) Knots and Quantum Gravity, Proceedings of Workshop held at UC Riverside 14–16 May 1993. Oxford Lecture Series in Mathematics and Its Applications, vol. 1. Clarendon/Oxford University Press, Oxford/New York (1994). arXiv:gr-qc/9311010

    Google Scholar 

  4. Ashtekar, A., Reuter, M., Rovelli, C.: From general relativity to quantum gravity. arXiv:1408.4336

  5. Bojowald, M.: Loop quantum cosmology. Living Rev. Relativ. 8, 11 (2005). gr-qc/0601085

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bojowald, M.: Canonical Gravity and Applications: Cosmology, Black Holes, and Quantum Gravity. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  7. D’Eath, P.D.: Supersymmetric Quantum Cosmology. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  8. Dittrich, B., Thiemann, T.: Testing the master constraint programme for loop quantum gravity I. General framework. Class. Quantum Gravity 23, 1025 (2004). gr-qc/0411138

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Gambini, R., Pullin, J.: Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  10. Gotay, M.J.: Functorial geometric quantization and Van Hove’s theorem. Int. J. Theor. Phys. 19, 139 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Haag, R.: Local Quantum Physics. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  12. Hawking, S.W.: Zeta function regularization of path integrals in curved spacetime. Commun. Math. Phys. 55, 133 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  14. Isham, C.J.: Some quantum field theory aspects of the superspace quantization of general relativity. Proc. R. Soc. Lond. A 351, 209 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  15. Isham, C.J.: Quantum field theory in curved spacetimes. A general mathematical framework. In: Proceedings, Differential Geometrical Methods in Mathematical Physics, Bonn, 1977 (1977), Berlin

    Google Scholar 

  16. Isham, C.J.: Topological and global aspects of quantum theory. In: DeWitt, B., Stora, R. (eds.) Relativity, Groups and Topology II. North-Holland, Amsterdam (1984)

    Google Scholar 

  17. Isham, C.J.: Quantum geometry. In: Christensen, S. (ed.) Quantum Theory of Gravity. Hilger, Bristol (1984)

    Google Scholar 

  18. Isham, C.J.: Canonical groups and the quantization of general relativity. Nucl. Phys. B, Proc. Suppl. 6, 349 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011

    Google Scholar 

  20. Isham, C.J., Kakas, A.: A group theoretic approach to the canonical quantization of gravity. 1. construction of the canonical group. Class. Quantum Gravity 1, 621 (1984)

    Article  ADS  MATH  Google Scholar 

  21. Isham, C.J., Kakas, A.: A group theoretical approach to the canonical quantization of gravity. 2. Unitary representations of the canonical group. Class. Quantum Gravity 1, 633 (1984)

    Article  ADS  MATH  Google Scholar 

  22. Isham, C.J., Kuchař, K.V.: Representations of space-time diffeomorphisms. 1. Canonical parametrized field theories. Ann. Phys. (N. Y.) 164, 288 (1985)

    Article  ADS  MATH  Google Scholar 

  23. Isham, C.J., Kuchař, K.V.: Representations of space-time diffeomorphisms. 2. Canonical geometrodynamics. Ann. Phys. (N. Y.) 164, 316 (1985)

    Article  ADS  MATH  Google Scholar 

  24. Kauffman, L.H.: Knots and Physics. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  25. Klauder, J.R.: Overview of affine quantum gravity. Int. J. Geom. Methods Mod. Phys. 3, 81 (2006). gr-qc/0507113

    Article  MathSciNet  Google Scholar 

  26. Kuchař, K.V.: Canonical quantum gravity. In: Gleiser, R.J., Kozamah, C.N., Moreschi, O.M. (eds.) General Relativity and Gravitation 1992. IOP Publishing, Bristol (1993). gr-qc/9304012

    Google Scholar 

  27. Landsman, N.P.: Mathematical Topics Between Classical and Quantum Mechanics. Springer, New York (1998)

    Book  MATH  Google Scholar 

  28. Landsman, N.P.: Quantization as a Functor. Quantization, Poisson Brackets and Beyond. Contemp. Math., vol. 315. Amer. Math. Soc., Providence (2002)

    MATH  Google Scholar 

  29. Moncrief, V., Teitelboim, C.: Momentum constraints as integrability conditions for the Hamiltonian constraint in general relativity. Phys. Rev. D 6, 966 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  30. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  31. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  32. Nicolai, H., Peeters, K., Zamaklar, M.: Loop quantum gravity: an outside view. Class. Quantum Gravity 22, R193 (2005). hep-th/0501114

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  34. Rovelli, C., Smolin, L.: Knot theory and quantum gravity. Phys. Rev. Lett. 61, 1155 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  35. Rovelli, C., Smolin, L.: Loop space representation for quantum general relativity. Nucl. Phys. B 331, 80 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  36. Smolin, L.: Space and time in the quantum universe. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity. Birkhäuser, Boston (1991)

    Google Scholar 

  37. Thiemann, T.: Quantum spin dynamics (QSD). Class. Quantum Gravity 15, 839 (1998). gr-qc/9606089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Thiemann, T.: The Phoenix project: master constraint programme for loop quantum gravity. Class. Quantum Gravity 23, 2211 (2006). gr-qc/0305080

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  40. Vargas Moniz, P.: Quantum Cosmology—The Supersymmetric Perspective, vols. 1 and 2. Springer, Berlin (2010)

    MATH  Google Scholar 

  41. Weinberg, S.: The Quantum Theory of Fields. Vol. II. Modern Applications. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Geometrical Quantization with Nontrivial . ii. Field Theories and GR. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_43

Download citation

Publish with us

Policies and ethics