Skip to main content

Epilogue II.C. Background Independence and Problem of Time at Deeper Levels of Structure

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3570 Accesses

Abstract

Humanity’s modelling of nature has hitherto almost always been at most dynamical at the metric and differentiable levels of structure. The current epilogue entertains Riemann’s curiosity for other possibilities through to Isham’s identification that Background Independence arguments in Quantum Gravity have little reason to stop at the metric and differentiable levels. We thus consider Background Independence also at the level of topological manifolds, topological spaces, metric spaces and sets. In particular, we show that the current book’s Background Independence and Problem of Time study additionally very largely extends to further levels of structure. We consider this firstly by replacing an upper level of structure with a deeper one, such as passing from differential geometry to purely topological manifolds. Secondly, by passing from an upper level of structure being dynamical to a tower of levels of structure being dynamical. Examples of the latter include passing from differential geometry to differential topology or from conventional canonical general relativity on a fixed spatial topological manifold to its counterpart admitting topology change. We end by posing many new research projects in this fascinating and mostly hitherto untapped field of study, and support this epilogue with the freely available online Appendices S and T on technicalities concerning the deeper levels of structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This is left imprecise due to, for instance, stratified differentiable manifolds retaining differentiability in some neighbourhoods.

  2. 2.

    See [55] for limitations on tower versions of such formulations of Temporal Relationalism.

  3. 3.

    Antichains are subsets of a poset such that the elements within each of which bear no ordering relations. Maximal antichains are the largest possible ones, in some ways analogous to global slices or Cauchy surfaces in Geometrodynamics.

References

  1. Anderson, E.: Spaces of spaces. arXiv:1412.0239

  2. Anderson, E.: Limitations on problem of time resolutions for theories with further levels of background independence (2017, forthcoming)

    Google Scholar 

  3. Borde, A., Dowker, H.F., Garcia, R.S., Sorkin, R.A., Surya, S.: Causal continuity in degenerate spacetimes. Class. Quantum Gravity 16, 3457 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Butterfield, J., Isham, C.J.: On the emergence of time in quantum gravity. In: Butterfield, J. (ed.) The Arguments of Time. Oxford University Press, Oxford (1999). gr-qc/9901024

    Google Scholar 

  5. Cornish, N., Spergel, D., Starkman, G.: Circles in the sky: finding topology with the microwave background radiation. Class. Quantum Gravity 15, 2657 (1998). astro-ph/9801212

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Dittrich, B., Hoehn, P.A.: Constraint analysis for variational discrete systems. J. Math. Phys. 54, 093505 (2013). arXiv:1303.4294

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Doering, A., Isham, C.: ‘What is a thing?’: topos theory in the foundations of physics. In: Coecke, R. (ed.) New Structures for Physics. Springer Lecture Notes in Physics, vol. 813. Springer, Heidelberg (2011). arXiv:0803.0417

    Google Scholar 

  8. Dowker, H.F.: The birth of spacetime atoms as the passage of time. arXiv:1405.3492

  9. Isham, C.J.: Quantum geometry. In: Christensen, S. (ed.) Quantum Theory of Gravity. Hilger, Bristol (1984)

    Google Scholar 

  10. Isham, C.J.: Quantum topology and quantization on the lattice of topologies. Class. Quantum Gravity 6, 1509 (1989)

    Article  ADS  MATH  Google Scholar 

  11. Isham, C.J.: Quantization on the lattice of topologies. In: Lusanna, L. (ed.) Proceedings, Knots, Topology and Quantum Field Theories, Florence, 1989. World Scientific, Singapore (1989)

    Google Scholar 

  12. Isham, C.J.: Canonical groups and the quantization of geometry and topology. In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity. Birkhäuser, Boston (1991)

    Google Scholar 

  13. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011

    Google Scholar 

  14. Isham, C.J.: Modern Differential Geometry for Physicists. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  15. Isham, C.J.: Some reflections on the status of conventional quantum theory when applied to quantum gravity. In: Gibbons, G.W., Shellard, E.P.S., Rankin, S.J. (eds.) The Future of Theoretical Physics and Cosmology (Stephen Hawking 60th Birthday Festschrift Volume). Cambridge University Press, Cambridge (2003). quant-ph/0206090

    Google Scholar 

  16. Isham, C.J.: A new approach to quantising space-time: I. Quantising on a general category. Adv. Theor. Math. Phys. 7, 331 (2003). gr-qc/0303060

    Article  MathSciNet  MATH  Google Scholar 

  17. Isham, C.J.: A new approach to quantising space-time: II. Quantising on a category of sets. Adv. Theor. Math. Phys. 7, 807 (2003). gr-qc/0304077

    Article  MathSciNet  MATH  Google Scholar 

  18. Isham, C.J.: A new approach to quantising space-time: III. State vectors as functions on arrows. Adv. Theor. Math. Phys. 8, 797 (2004). gr-qc/0306064

    Article  MATH  Google Scholar 

  19. Isham, C.J.: Topos methods in the foundations of physics. In: Halvorson, H. (ed.) Deep Beauty. Cambridge University Press, Cambridge (2010). arXiv:1004.3564

    Google Scholar 

  20. Isham, C.J.: An Introduction to General Topology And Quantum Topology, unpublished, Lectures given at Banff in 1989 (and available on the KEK archive)

    Google Scholar 

  21. Isham, C.J.: Quantising on a category. quant-ph/0401175

  22. Isham, C.J., Kubyshin, Y.A., Renteln, P.: Quantum norm theory and the quantization of metric topology. Class. Quantum Gravity 7, 1053 (1990)

    Article  ADS  MATH  Google Scholar 

  23. Isham, C.J., Kubyshin, Y.A., Renteln, P.: Quantum metric topology. In: Markov, M.A., Berezin, V.A., Frolov, V.P. (eds.) Proceedings, Quantum Gravity, Moscow, 1990. World Scientific, Singapore (1991)

    Google Scholar 

  24. Jammer, M.: Concepts of Simultaneity. From Antiquity to Einstein and Beyond. Johns Hopkins University Press, Baltimore (2006)

    Google Scholar 

  25. Lachièze-Rey, M., Luminet, J.P.: Cosmic topology. Phys. Rep. 254, 135 (1995). gr-qc/9605010

    Article  ADS  MathSciNet  Google Scholar 

  26. Lee, J.M.: Introduction to Topological Manifolds. Springer, New York (2011)

    Book  MATH  Google Scholar 

  27. Lee, J.M.: Introduction to Smooth Manifolds, 2nd edn. Springer, New York (2013)

    MATH  Google Scholar 

  28. Levin, J., Scannapieco, E., de Gasperis, G., Silk, J., Barrow, J.D.: How the universe got its spots. Phys. Rev. D 66, 104010 (2002). astro-ph/9807206

    Article  ADS  MathSciNet  Google Scholar 

  29. Loll, R.: Discrete approaches to quantum gravity in four dimensions. Living Rev. Relativ. 1, 13 (1998). gr-qc/9805049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  31. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  32. Munkres, J.R.: Topology. Prentice–Hall, Upper Saddle River (2000)

    MATH  Google Scholar 

  33. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39, 419 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  34. Oriti, D.: Disappearance and emergence of space and time in quantum gravity. arXiv:1302.2849

  35. Rideout, D., Wallden, P.: Emergence of spatial structure from causal sets. J. Phys. Conf. Ser. 174, 012017 (2009). arXiv:0905.0017

    Article  MATH  Google Scholar 

  36. Riemann, B.: On the hypotheses which lie at the bases of geometry. Nature 8, 140 (1873); 36 (1873) for a translation

    Article  Google Scholar 

  37. Sorkin, R.D.: Spacetime and causal sets. In: D’Olivo, J.C., Nahmad-Achar, E., Rosenbaum, M., Ryan, M.P., Urrutia, L.F., Zertuche, F. (eds.) Relativity and Gravitation: Classical and Quantum, p. 150. World Scientific, Singapore (1991)

    Google Scholar 

  38. Sorkin, R.D.: Forks in the road, on the way to quantum gravity. Int. J. Theor. Phys. 36, 2759 (1997). gr-qc/9706002

    Article  MathSciNet  MATH  Google Scholar 

  39. Sorkin, R.D.: Relativity theory does not imply that the future already exists: a counterexample. In: Pektov, V. (ed.) Relativity and the Dimensionality of the World. Springer, Dordrecht (2007)

    Google Scholar 

  40. Sorkin, R.D.: Causal sets: discrete gravity. Notes for the Valdivia Summer School. gr-qc/0309009

  41. Steen, L.A., Seebach, J.A.: Counterexamples in Topology. Dover, New York (1995)

    MATH  Google Scholar 

  42. Stern, A.: Anyons and the quantum hall effect—a pedagogical review. Ann. Phys. 323, 204 (2007). arXiv:0711.4697

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Wheeler, J.A.: Geometrodynamics and the issue of the final state. In: DeWitt, B.S., DeWitt, C.M. (eds.) Groups, Relativity and Topology. Gordon & Breach, New York (1964)

    Google Scholar 

  44. Wheeler, J.A.: Gravitation as geometry—II. In: Chiu, H.Y., Hoffman, W.F. (eds.) Gravitation and Relativity. Benjamin, New York (1964)

    Google Scholar 

  45. Wheeler, J.A.: Superspace and the nature of quantum geometrodynamics. In: DeWitt, C., Wheeler, J.A. (eds.) Battelle Rencontres: 1967 Lectures in Mathematics and Physics. Benjamin, New York (1968)

    Google Scholar 

  46. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121, 351 (1989)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Epilogue II.C. Background Independence and Problem of Time at Deeper Levels of Structure. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_38

Download citation

Publish with us

Policies and ethics