Absolute Versus Relational Motion Debate

  • Edward Anderson
Part of the Fundamental Theories of Physics book series (FTPH, volume 190)


This well-known debate in the foundations of physics goes (at least) as far back as Newton versus Leibniz, with subsequent notable contributions argued to be by Mach, Einstein and twentieth-century astronomers pursuing increasingly accurate timekeeping. This debate concerns whether time and space are absolute given background quantities, or ultimately only make sense in terms of relations between tangible physical entities. This chapter is recommended reading prior to Chaps.  9,  10 and  12’s discussion of Background Independence in general relativity and in Quantum Gravity, which amount to more modern forms of the same debate.


  1. 3.
    Alexander, H.G. (ed.): The Leibnitz–Clark Correspondence. Manchester University Press, Manchester (1956) Google Scholar
  2. 13.
    Anderson, J.L.: Principles of Relativity Physics. Academic Press, New York (1967) Google Scholar
  3. 60.
    Anderson, J.L., Gautreau, R.: Operational formulation of the principle of equivalence. Phys. Rev. 185, 1656 (1969) ADSCrossRefGoogle Scholar
  4. 98.
    Barbour, J.B.: The timelessness of quantum gravity. I. The evidence from the classical theory. Class. Quantum Gravity 11, 2853 (1994) ADSMathSciNetCrossRefGoogle Scholar
  5. 104.
    Barbour, J.B.: The nature of time, fqxi ‘nature of time’ essay competition: juried first prize. arXiv:0903.3489
  6. 105.
    Barbour, J.B., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382, 295 (1982) ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 171.
    Broad, C.D.: Scientific Thought. Routledge, London (1923) zbMATHGoogle Scholar
  8. 211.
    Clemence, G.M.: Astronomical time. Rev. Mod. Phys. 29, 2 (1957) ADSCrossRefGoogle Scholar
  9. 231.
    de Sitter, W.: On the secular accelerations and the fluctuations of the longitudes of the Moon, the Sun, Mercury and Venus. Bull. Astron. Inst. Neth. 4, 21 (1927) ADSzbMATHGoogle Scholar
  10. 284.
    Einstein, A.: My theory. The Times, 28 November 1919; Republished as Time, space and gravitation. Opt. Br. Opt. J. 58, 187 (1919) Google Scholar
  11. 285.
    Einstein, A.: Autobiographical notes. In: Schilpp, P.A. (ed.) Albert Einstein: Philosopher–Scientist. Library of Living Scientists, Evanston (1949) Google Scholar
  12. 447.
    Herrmann, S., Senger, A., Möhle, K., Nagel, M., Kovalchuk, E.V., Peters, A.: Rotating optical cavity experiment testing Lorentz invariance at the \(10^{-17}\) level. Phys. Rev. D 80, 105011 (2009). arXiv:1002.1284 ADSCrossRefGoogle Scholar
  13. 632.
    Mach, E.: Die Mechanik in ihrer Entwickelung, Historisch-kritisch dargestellt. Barth, Leipzig (1883); An English translation is The Science of Mechanics: A Critical and Historical Account of Its Development. Open Court, La Salle (1960) zbMATHGoogle Scholar
  14. 669.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008) Google Scholar
  15. 670.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010) Google Scholar
  16. 702.
    Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993) Google Scholar
  17. 736.
    Rindler, W.: Relativity. Special, General and Cosmological. Oxford University Press, Oxford (2001) zbMATHGoogle Scholar
  18. 888.
    Weinberg, S.: Cosmology. Oxford University Press, New York (2008) zbMATHGoogle Scholar
  19. 906.
    Whitrow, G.J.: The Natural Philosophy of Time. Nelson, London (1961) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edward Anderson
    • 1
  1. 1.DAMTPCentre for Mathematical SciencesCambridgeUK

Personalised recommendations