Skip to main content

Taking Function Spaces Thereover: Beables and Observables

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3568 Accesses

Abstract

The fourth Problem of Time facet is the Problem of Observables (or of Beables). The corresponding Background Independence aspect is Expression in Terms of Beables, to be approached by taking function spaces over a theory’s phase space. In constrained theories, observables must commute with the constraints. There are moreover various notions of constraints that can be used for this purpose, corresponding to distinct notions of observables. All sets of constraints thus used must however close, i.e. be constraint subalgebraic structures. Thus Expression in Terms of Beables logically postcedes the previous chapter’s Constraint Closure.

The corresponding beables subalgebraic structures also form a lattice, whose unit and zero elements are the unconstrained and Dirac observables. The rest of the lattice, on the other hand, is an ‘A-observables’ generalization of some theories possessing a notion of Kuchař observables ‘intermediate between’ unconstrained and Dirac observables. (These are all notions of data observables, as opposed to Chap. 27 and 28’s path and histories observables.) We additionally formulate notions of observables as solution spaces of particular partial (or functional) differential equations; we provide explicit examples of such equations for electromagnetism, general relativity and various model arenas. For various relational mechanics models, we note that their observables partial differential equations are solved by functions of the corresponding shapes and their momenta. Finally, we show how supergravity is among those theories for which Kuchař observables are supplanted by distinct notions of A-observables.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here is a smearing function. This is given in TRi form since first-class constraints are both trivially weak beables and TRi-smeared, pointing to all beables requiring TRi-smearing.

  2. 2.

    The Author does not choose to base this book on partial observables due to these carrying ‘any change’ connotations. Elsewhere, the Partial Observables Approach has also be considered in combination with Internal Time Approaches. Here, internal time can provide the timestandard in schemes requiring a such if one is able or willing to pay the price for the usual inconveniences of a such; see e.g. [251, 252].

References

  1. Anderson, E.: Problem of time in quantum gravity. Ann. Phys. 524, 757 (2012). arXiv:1206.2403

    Article  MathSciNet  MATH  Google Scholar 

  2. Anderson, E.: Beables/observables in classical and quantum gravity. SIGMA 10, 092 (2014). arXiv:1312.6073

    MathSciNet  MATH  Google Scholar 

  3. Anderson, E.: The problem of time and quantum cosmology in the relational particle mechanics arena. arXiv:1111.1472

  4. Anderson, E.: Explicit partial and functional differential equations for beables or observables. arXiv:1505.03551

  5. Ashtekar, A., Tate, R.S., Uggla, C.: Minisuperspaces: observables and quantization. Int. J. Mod. Phys. D 2, 15 (1993). gr-qc/9302027

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Barbour, J.B., Foster, B.Z.: Constraints and Gauge Transformations: Dirac’s Theorem is not Always Valid. arXiv:0808.1223

  7. Bergmann, P.G.: “Gauge-invariant” variables in general relativity. Phys. Rev. 124, 274 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bergmann, P.G., Komar, A.: The coordinate group symmetries of general relativity. Int. J. Theor. Phys. 5, 15 (1972)

    Article  MathSciNet  Google Scholar 

  9. Carlip, S.: Observables, gauge invariance, and time in \(2 + 1\) dimensional quantum gravity. Phys. Rev. D 42, 2647 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  10. Carlip, S.: Measuring the metric in \((2 + 1)\)-dimensional quantum gravity. Class. Quantum Gravity 8, 5 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Coxeter, H.S.M.: Introduction to Geometry. Wiley, New York (1989)

    MATH  Google Scholar 

  12. DeWitt, B.S.: The quantization of geometry. In: Witten, L. (ed.) Gravitation: An Introduction to Current Research. Wiley, New York (1962)

    Google Scholar 

  13. Dirac, P.A.M.: Forms of relativistic dynamics. Rev. Mod. Phys. 21, 392 (1949)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University, New York (1964)

    MATH  Google Scholar 

  15. Dittrich, B.: Partial and complete observables for canonical general relativity. Class. Quantum Gravity 23, 6155 (2006). gr-qc/0507106

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Dittrich, B.: Partial and complete observables for Hamiltonian constrained systems. Gen. Relativ. Gravit. 38, 1891 (2007). gr-qc/0411013

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Dittrich, B., Hoehn, P.A., Koslowski, T.A., Nelson, M.I.: Chaos, Dirac observables and constraint quantization. arXiv:1508.01947

  18. Earman, J.: Gauge matters. Philos. Sci. 69, S209 (2002)

    Article  MathSciNet  Google Scholar 

  19. Gambini, R., Pullin, J.: Loops, Knots, Gauge Theories and Quantum Gravity. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  20. Giddings, S.B., Marolf, D., Hartle, J.B.: Observables in effective gravity. Phys. Rev. D 74, 064018 (2006). hep-th/0512200

    Article  ADS  MathSciNet  Google Scholar 

  21. Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)

    MATH  Google Scholar 

  22. Isham, C.J.: Canonical quantum gravity and the problem of time. In: Ibort, L.A., Rodríguez, M.A. (eds.) Integrable Systems, Quantum Groups and Quantum Field Theories. Kluwer Academic, Dordrecht (1993). gr-qc/9210011

    Google Scholar 

  23. Kouletsis, I.: Covariance and time regained in canonical general relativity. Phys. Rev. D 78, 064014 (2008). arXiv:0803.0125

    Article  ADS  MathSciNet  Google Scholar 

  24. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992); Reprinted as Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011)

    Google Scholar 

  25. Kuchař, K.V.: Canonical quantum gravity. In: Gleiser, R.J., Kozamah, C.N., Moreschi, O.M. (eds.) General Relativity and Gravitation 1992. IOP Publishing, Bristol (1993). gr-qc/9304012

    Google Scholar 

  26. Kuchař, K.V.: The problem of time in quantum geometrodynamics. In: Butterfield, J. (ed.) The Arguments of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  27. Laurent-Gengoux, C., Pichereau, A., Vanhaecke, P.: Poisson Structures. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  28. Marolf, D.: Observables and a Hilbert space for Bianchi IX. Class. Quantum Gravity 12, 1441 (1995). arXiv:gr-qc/9409049

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Marolf, D.: Solving the problem of time in minisuperspace: measurement of Dirac observables. Phys. Rev. D 79, 084016 (2009). arXiv:0902.1551

    Article  ADS  MathSciNet  Google Scholar 

  30. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  31. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  32. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  33. Pons, J.M., Salisbury, D.C., Sundermeyer, K.A.: Revisiting observables in generally covariant theories in the light of gauge fixing methods. Phys. Rev. D 80, 084015 (2009). arXiv:0905.4564

    Article  ADS  Google Scholar 

  34. Pons, J.M., Salisbury, D.C., Sundermeyer, K.A.: Observables in classical canonical gravity: folklore demystified In: Proceedings of 1st Mediterranean Conference on Classical and Quantum Gravity. arXiv:1001.2726

  35. Rovelli, C.: Is there incompatibility between the ways time is treated in general relativity and in standard quantum mechanics? In: Ashtekar, A., Stachel, J. (eds.) Conceptual Problems of Quantum Gravity, p. 126. Birkhäuser, Boston (1991)

    Google Scholar 

  36. Rovelli, C.: Time in quantum gravity: an hypothesis. Phys. Rev. D 43, 442 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  37. Rovelli, C.: Quantum evolving constants. Phys. Rev. D 44, 1339 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. Rovelli, C.: GPS observables in general relativity. Phys. Rev. D 65, 044017 (2002). gr-qc/0110003

    Article  ADS  MathSciNet  Google Scholar 

  39. Rovelli, C.: Partial observables. Phys. Rev. 65, 124013 (2002). gr-qc/0110035

    ADS  MathSciNet  Google Scholar 

  40. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  41. Rovelli, C.: A note on the foundation of relativistic mechanics. I: relativistic observables and relativistic states. gr-qc/0111037

  42. Rovelli, C.: A note on the foundation of relativistic mechanics. II: covariant Hamiltonian general relativity. gr-qc/0202079

  43. Rovelli, C.: Forget time, fqXi ‘Nature of Time’ Essay Competition: Community First Prize. arXiv:0903.3832

  44. Sorkin, R.D.: Forks in the road, on the way to quantum gravity. Int. J. Theor. Phys. 36, 2759 (1997). gr-qc/9706002

    Article  MathSciNet  MATH  Google Scholar 

  45. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  46. Torre, C.G.: Observables for the polarized Gowdy model. Class. Quantum Gravity 23, 1543 (2006). gr-qc/0508008

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Wüthrich, C.: Approaching the Planck scale from a generally relativistic point of view: a philosophical appraisal of loop quantum gravity. Ph.D. thesis, Pittsburgh (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Taking Function Spaces Thereover: Beables and Observables. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_25

Download citation

Publish with us

Policies and ethics