Temporal Relationalism: More General Geometries

  • Edward Anderson
Part of the Fundamental Theories of Physics book series (FTPH, volume 190)


This brief chapter brings in a wider range of models which are useful for Problem of Time and Background Independence considerations. We firstly consider anisotropic minisuperspace models, which are useful as anisotropy is a simple and quite often studied notion of shape. We secondly bring in more general Jacobi–Synge type actions corresponding to configuration space possessing a more general metric geometry than Riemann’s. These are moreover a significant model as regards incorporating fermions into this book’s main approach to the Problem of Time.


  1. 14.
    Anderson, E.: Variations on the seventh route to relativity. Phys. Rev. D 68, 104001 (2003). gr-qc/0302035 ADSMathSciNetCrossRefGoogle Scholar
  2. 31.
    Anderson, E.: Minisuperspace model of machian resolution of problem of time. I. Isotropic case. Gen. Relativ. Gravit. 46, 1708 (2014). arXiv:1307.1916 ADSCrossRefzbMATHGoogle Scholar
  3. 109.
    Barbour, J.B., Foster, B.Z., ó Murchadha, N.: Relativity without relativity. Class. Quantum Gravity 19, 3217 (2002). gr-qc/0012089 ADSMathSciNetCrossRefzbMATHGoogle Scholar
  4. 149.
    Blyth, W.F., Isham, C.J.: Quantization of a Friedmann universe filled with a scalar field. Phys. Rev. D 11, 768 (1975) ADSMathSciNetCrossRefGoogle Scholar
  5. 179.
    Brunnemann, J., Fleischhack, C.: On the configuration spaces of homogeneous loop quantum cosmology and loop quantum gravity. arXiv:0709.1621
  6. 419.
    Halliwell, J.J., Hawking, S.W.: Origin of structure in the universe. Phys. Rev. D 31, 1777 (1985) ADSMathSciNetCrossRefGoogle Scholar
  7. 598.
    Lanczos, C.: The Variational Principles of Mechanics. University of Toronto Press, Toronto (1949) zbMATHGoogle Scholar
  8. 657.
    Misner, C.W.: Quantum cosmology. I. Phys. Rev. 186, 1319 (1969) ADSCrossRefzbMATHGoogle Scholar
  9. 659.
    Misner, C.W.: Minisuperspace. In: Klauder, J. (ed.) Magic Without Magic: John Archibald Wheeler. Freeman, San Francisco (1972) Google Scholar
  10. 669.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008) Google Scholar
  11. 670.
    Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010) Google Scholar
  12. 760.
    Ryan, M.P.: Hamiltonian Cosmology. Lec. Notes Phys., vol. 13. Springer, Berlin (1972) Google Scholar
  13. 873.
    Wainwright, J., Ellis, G.F.R.: Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (2005) zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Edward Anderson
    • 1
  1. 1.DAMTPCentre for Mathematical SciencesCambridgeUK

Personalised recommendations