Skip to main content

Configuration Spaces and Their Configurational Relationalism

  • Chapter
  • First Online:
The Problem of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 190))

  • 3570 Accesses

Abstract

We develop here a very general ‘G-Act G-All’ implementation of Configurational Relationalism using group and fibre bundle mathematics. This refers to attaining group invariance by following group action by an operation using all of the group. It is useful in the study of configuration spaces, of which the freely available online Appendices G, H, I and N provide a wide range of foundational examples. Applications include both whole-universe modelling—of interest in foundational and theoretical physics—and Kendall-type shape statistics (which works for subsystems and is useful throughout the natural sciences).

‘G-Act G-All’ gives some indication of how much generality is required to remain inside one of the Problem of Time facet ‘gates’ during subsequent attempts to pass through further gates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Appendix F.4 for the definitions of \(\mathfrak{g}\)-fibre bundles and section.

  2. 2.

    From here on, terming these ‘Metric Scale and Shape RPM’ and ‘Metric Shape RPM’ respectively helps get this point across while distinguishing them from yet further RPMs outlined below.

  3. 3.

    \(\mathbb{S}^{3}\) is in many senses the simplest closed model for space. Its closest rival is the 3-torus \(\mathbb{T}^{3}\), which, due to arising from the simplest topological identification of \(\mathbb{R}^{3}\), is locally flat. However, this has less (global) Killing vectors, by 6 forming \(\mathit{SO}(4)\) to 3 forming \(\times_{i = 1}^{3} U(1)\).

References

  1. Anderson, E.: Foundations of relational particle dynamics. Class. Quantum Gravity 25, 025003 (2008). arXiv:0706.3934

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Anderson, E.: Machian classical and semiclassical emergent time. Class. Quantum Gravity 31, 025006 (2014). arXiv:1305.4685

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Anderson, E.: Kendall’s shape statistics as a classical realization of Barbour-type timeless records theory approach to quantum gravity. Stud. Hist. Philos. Mod. Phys. 51, 1 (2015). arXiv:1307.1923

    Article  MathSciNet  MATH  Google Scholar 

  4. Anderson, E.: Six new mechanics corresponding to further shape theories. Int. J. Mod. Phys. D 25, 1650044 (2016). arXiv:1505.00488

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Anderson, E.: The problem of time and quantum cosmology in the relational particle mechanics arena. arXiv:1111.1472

  6. Anderson, E.: Relationalism. arXiv:1205.1256

  7. Anderson, E.: Configuration spaces in fundamental physics. arXiv:1503.01507

  8. Anderson, E.: Spherical relationalism. arXiv:1505.02448

  9. Barbour, J.B.: The End of Time. Oxford University Press, Oxford (1999)

    Google Scholar 

  10. Barbour, J.B.: Scale-invariant gravity: particle dynamics. Class. Quantum Gravity 20, 1543 (2003). gr-qc/0211021

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Barbour, J.B., Bertotti, B.: Mach’s principle and the structure of dynamical theories. Proc. R. Soc. Lond. A 382, 295 (1982)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Barbour, J.B., ó Murchadha, N.: Conformal superspace: the configuration space of general relativity. arXiv:1009.3559

  13. Gross, S.e.g.D.J., Wess, J.: Scale invariance, conformal invariance, and the high-energy behavior of scattering amplitudes. Phys. Rev. D 2, 753 (1970)

    Article  ADS  Google Scholar 

  14. Kendall, D.G.: Shape manifolds, procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16, 81 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kendall, D.G.: A survey of the statistical theory of shape. Stat. Sci. 4, 87 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  17. Kiefer, C.: Quantum Gravity. Clarendon, Oxford (2004)

    MATH  Google Scholar 

  18. Kobayashi, S.: Transformation Groups in Differential Geometry. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  19. Kuchař, K.V.: Time and interpretations of quantum gravity. In: Kunstatter, G., Vincent, D., Williams, J. (eds.) Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics. World Scientific, Singapore (1992); Reprinted as Int. J. Mod. Phys. Proc. Suppl. D 20, 3 (2011)

    Google Scholar 

  20. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 1. Springer, Berlin (2008)

    Google Scholar 

  21. Muga, G., Sala Mayato, R., Egusquiza, I. (eds.): Time in Quantum Mechanics, vol. 2. Springer, Berlin (2010)

    Google Scholar 

  22. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press, Princeton (1993)

    Google Scholar 

  23. Rindler, W.: Relativity. Special, General and Cosmological. Oxford University Press, Oxford (2001)

    MATH  Google Scholar 

  24. Shapiro, L.S.: Affine Analysis of Image Sequences. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  25. Small, C.G.S.: The Statistical Theory of Shape. Springer, New York (1996)

    Book  MATH  Google Scholar 

  26. Weinberg, S.: Cosmology. Oxford University Press, New York (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Anderson, E. (2017). Configuration Spaces and Their Configurational Relationalism. In: The Problem of Time. Fundamental Theories of Physics, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-319-58848-3_14

Download citation

Publish with us

Policies and ethics