Skip to main content

Biology of Bone and the Interaction of Bone with Other Organ Systems

  • Chapter
  • First Online:
Multiscale Mechanobiology of Bone Remodeling and Adaptation

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 578))

Abstract

Bone has essential functions to support and protect the soft tissues of the body and to enable locomotion. The formation and maintenance of bone is orchestrated by the three major cell types resident within it- osteoblasts, osteocytes and osteoclasts. These cells confer on bone its ability to respond to increased or decreased biomechanical requirements, bone matrix repair and to regulate a variety of extra-skeletal functions. For locomotion, bone is dependent on the actions of muscles, and bone also depends on the strains produced by muscles for its proper functioning. Unloading of bone results in rapid loss of bone mass, as seen in space flight or bed rest. Recent findings suggest that, in addition to biomechanical interaction, bone and muscle may also communicate biochemically. Bone also interacts closely with the vasculature and the nervous system, and is highly perfused and innervated. The latter suggests roles for the central nervous system in bone function, and this has increasingly been found to be the case. Vascular pathology also has implications for bone health, which is demonstrated in avascular bone necrosis and fracture non-union. Articulating joints in the skeleton depend on cartilage providing a frictionless surface and spreading load across the underlying bone. Thus osteoarthritis is a disease of the whole joint, with important effects in both bone and cartilage tissue compartments. This chapter will introduce the biology of bone tissue and discuss its interaction with muscle, cartilage, the nervous system and the vasculature, since all of these organ systems underpin an understanding of the biomechanics of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R.K. Aaron, J.P. Dyke, D.M. Ciombor, D. Ballon, J. Lee, E. Jung, G.A. Tung, Perfusion abnormalities in subchondral bone associated with marrow edema. Ann. N. Y. Acad. Sci. 1117, 124–137 (2007)

    Article  Google Scholar 

  2. E. Abe, R.C. Marians, W. Yu, X.B. Wu, T. Ando, Y. Li, J. Iqbal, L. Eldeiry, G. Rajendren, H.C. Blair, T.F. Davies, M. Zaidi, TSH is a negative regulator of skeletal remodeling. Cell 115(2), 151–162 (2003)

    Article  Google Scholar 

  3. T. Alliston, Biological regulation of bone quality. Curr. Osteoporos. Rep. 12(3), 366–375 (2014)

    Article  Google Scholar 

  4. A.K. Amin, J.S. Huntley, A.H. Simpson, A.C. Hall, Chondrocyte survival in articular cartilage: the influence of subchondral bone in a bovine model. J. Bone Joint Surg. Br. 91(5), 691–699 (2009)

    Article  Google Scholar 

  5. C.C. Arnoldi, Vascular aspects of degenerative joint disorders: a synthesis. Acta Orthop. Scand. 65(Sup 261), 1–82 (1994)

    Google Scholar 

  6. N. Asada, Y. Katayama, M. Sato, K. Minagawa, K. Wakahashi, H. Kawano, Y. Kawano, A. Sada, K. Ikeda, T. Matsui, M. Tanimoto, Matrix-embedded osteocytes regulate mobilization of hematopoietic stem/progenitor cells. Cell Stem Cell 12(6), 737–747 (2013)

    Article  Google Scholar 

  7. G.J. Atkins, D.M. Findlay, Osteocyte regulation of bone mineral: a little give and take. Osteoporos. Int. 23(8), 2067–2079 (2012)

    Article  Google Scholar 

  8. J.E. Aubin, Advances in the osteoblast lineage. Biochem. Cell Biol. 76(6), 899–910 (1998)

    Article  Google Scholar 

  9. C.S. Bahney, D.P. Hu, T. Miclau, R.S. Marcucio, The multifaceted role of the vasculature in endochondral fracture repair. Front. Endocrinol. 6(4), 1–10 (2014)

    Google Scholar 

  10. A. Bajayo, A. Bar, A. Denes, M. Bachar, V. Kram, M. Attar-Namdar, A. Zallone, K.J. Kovács, R. Yirmiya, I. Bab, Skeletal parasympathetic innervation communicates central IL-1 signals regulating bone mass accrual. Proc. Natl. Acad. Sci. USA 109(38), 15455–15460 (2012)

    Article  Google Scholar 

  11. R. Baron, M. Kneissel, WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19(2), 179–192 (2013)

    Article  Google Scholar 

  12. K.L. Bennell, M.W. Creaby, T.V. Wrigley, K.A. Bowles, R.S. Hinman, F. Cicuttini, D.J. Hunter, Bone marrow lesions are related to dynamic knee loading in medial knee osteoarthritis. Ann. Rheum. Dis. 69(6), 1151–1154 (2010)

    Article  Google Scholar 

  13. L.F. Bonewald, The amazing osteocyte. J. Bone Miner. Res. 26(2), 229–238 (2011)

    Article  Google Scholar 

  14. L.F. Bonewald, Osteocyte biology, in Osteoporosis, ed. by R. Marcus, D. Feldman, D.W. Dempster, M. Luckey, J.A. Cauley (Academic Press, New York, 2013), pp. 209–234. (Chapter 10)

    Chapter  Google Scholar 

  15. A.L. Boskey, Biomineralization: conflicts, challenges, and opportunities. J. Cell. Biochem. 72(S30), 83–91 (1998). doi:10.1002/(SICI)1097-4644(1998)72:30/31+<83::AID-JCB12>3.0.CO;2-F. ISSN 1097-4644

  16. M.L. Brandi, P. Collin-Osdoby, Vascular biology and the skeleton. J. Bone Miner. Res. 21(2), 183–192 (2006)

    Article  Google Scholar 

  17. M. Brotto, M.L. Johnson, Endocrine crosstalk between muscle and bone. Exerc. Sport Sci. Rev. 12(2), 135–141 (2014)

    Google Scholar 

  18. D.B. Burr, M.A. Gallant, Bone remodelling in osteoarthritis. Nat. Rev. Rheumatol. 8(11), 665–673 (2012)

    Article  Google Scholar 

  19. C. Ciani, S.B. Doty, S.P. Fritton, An effective histological staining process to visualize bone interstitial fluid space using confocal microscopy. Bone 44(5), 1015–1017 (2009)

    Article  Google Scholar 

  20. J.E. Compston, Bone marrow and bone: a functional unit. J. Endocrinol. 173(3), 387–394 (2002)

    Article  Google Scholar 

  21. S.D. Cook, D.C. Rueger, Osteogenic protein-1: biology and applications. Clin. Orthop. Relat. Res. 324, 29–38 (1996)

    Article  Google Scholar 

  22. D. Couchourel, I. Aubry, A. Delalandre, M. Lavigne, J. Martel-Pelletier, J.P. Pelletier, D. Lajeunesse, Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum. 60(5), 1438–1450 (2009)

    Article  Google Scholar 

  23. S.C. Cowin, The significance of bone microstructure in mechanotransduction. J. Biomech. 40(Suppl 1), S105–S109 (2007)

    Article  MathSciNet  Google Scholar 

  24. M.M. Deckers, R.L. van Bezooijen, G. van der Horst, J. Hoogendam, C. van Der Bent, S.E. Papapoulos, C.W. Löwik, Bone morphogenetic proteins stimulate angiogenesis through osteoblast-derived vascular endothelial growth factor A. Endocrinology 143(4), 1545–1553 (2002)

    Article  Google Scholar 

  25. J. Dequeker, S. Mohan, R.D. Finkelman, J. Aerssens, D.J. Baylink, Generalized osteoarthritis associated with increased insulin-like growth factor types i and ii and transforming growth factor beta in cortical bone from the iliac crest. possible mechanism of increased bone density and protection against osteoporosis. Arthritis Rheum. 36(12), 1702–1708 (1993)

    Article  Google Scholar 

  26. D. Dore, S. Quinn, C. Ding, T. Winzenberg, G. Zhai, F. Cicuttini, G. Jones, Natural history and clinical significance of MRI-detected bone marrow lesions at the knee: a prospective study in community dwelling older adults. Arthritis Res. Ther. 12(6), R223 (2010)

    Article  Google Scholar 

  27. S. Dudley-Javoroski, R.K. Shields, Regional cortical and trabecular bone loss after spinal cord injury. J. Rehabil. Res. Dev. 49(9), 1365–1376 (2012)

    Article  Google Scholar 

  28. N.L. Fazzalari, J.S. Kuliwaba, G.J. Atkins, M.R. Forwood, D.M. Findlay, The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J. Bone Miner. Res. 16(6), 1015–1027 (2001)

    Article  Google Scholar 

  29. G. Feldman, M. Li, S. Martin, M. Urbanek, J.A. Urtizberea, M. Fardeau, M. LeMerrer, J.M. Connor, J. Triffitt, R. Smith, M. Muenke, F.S. Kaplan, E.M. Shore, Fibrodysplasia ossificans progressiva, a heritable disorder of severe heterotopic ossification, maps to human chromosome 4q27-31. Am. J. Hum. Genet. 66(1), 128–135 (2000)

    Article  Google Scholar 

  30. D.T. Felson, S. McLaughlin, J. Goggins, M.P. LaValley, M.E. Gale, S. Totterman, W. Li, C. Hill, D. Gale, Bone marrow edema and its relation to progression of knee osteoarthritis. Ann. Intern. Med. 139(5 Pt 1), 330–336 (2003)

    Article  Google Scholar 

  31. J.R. Field, G. Sumner-Smith, Bone blood flow response to surgical trauma. Injury 33(5), 447–451 (2002)

    Article  Google Scholar 

  32. D.M. Findlay, Vascular pathology and osteoarthritis. Rheumatology (Oxford) 46(12), 1763–1768 (2007)

    Article  Google Scholar 

  33. D.M. Findlay, Subchondral bone in osteoarthritis, in Principles of Osteoarthritis, ed. by B.M. Rothschild (InTech, Croatia, 2012), pp. 139–154

    Google Scholar 

  34. D.M. Findlay, Long overlooked: the role of subchondral bone in osteoarthritis pathophysiology and pain. Medicographia 35(2), 221–227 (2013)

    Google Scholar 

  35. D.M. Findlay, P.M. Sexton, Calcitonin. Growth Factors 22(4), 217–224 (2004)

    Article  Google Scholar 

  36. H. Fleisch, Bisphosphonates in osteoporosis. Eur. Spine J. 12(Suppl 2), S142–S146 (2003)

    Article  Google Scholar 

  37. S.P. Fritton, S. Weinbaum, Fluid and solute transport in bone: flow-induced mechanotransduction. Annu. Rev. Fluid Mech. 41, 347–374 (2009)

    Article  MATH  Google Scholar 

  38. H. M Frost, Bone “mass” and the “mechanostat”: a proposal. Anat. Rec. 219(1), 1–9 (1987)

    Google Scholar 

  39. H.M. Frost, The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J. Bone Miner. Metab. 18(6), 305–316 (2000)

    Article  Google Scholar 

  40. A. Frotzler, S. Coupaud, C. Perret, T.H. Kakebeeke, K.J. Hunt, N. Donaldson Nde, P. Eser, High-volume FES-cycling partially reverses bone loss in people with chronic spinal cord injury. J. Appl. Physiol. 43(1), 169–176 (2008)

    Google Scholar 

  41. T. Fukuda, S. Takeda, R. Xu, H. Ochi, S. Sunamura, T. Sato, S. Shibata, Y. Yoshida, Z. Gu, A. Kimura, C. Ma, C. Xu, W. Bando, K. Fujita, K. Shinomiya, T. Hirai, Y. Asou, M. Enomoto, H. Okano, A. Okawa, H. Itoh, Inner ear vestibular signals regulate bone remodeling via the sympathetic nervous system. Nature 497(7450), 490–493 (2013)

    Article  Google Scholar 

  42. S. Fukumoto, T.J. Martin, Bone as an endocrine organ. Trends Endocrinol. Metab. 20(5), 230–236 (2009)

    Article  Google Scholar 

  43. A. García-Martín, R. Reyes-García, J.M. García-Castro, P. Rozas-Moreno, F. Escobar-Jiménez, M. Muñoz-Torres, Role of serum FSH measurement on bone resorption in postmenopausal women. Endocrine 41(2), 302–308 (2012)

    Article  Google Scholar 

  44. B.S. Gardiner, D.W. Smith, P. Pivonka, A. Grodzinsky, E. Frank, L. Zhang, Solute transport in cartilage undergoing cyclic deformation. Comput. Methods Biomech. Biomed. Eng. 10(4), 265–278 (2007)

    Article  Google Scholar 

  45. S. Gopal, S. Majumder, A.G. Batchelor, S.L. Knight, P. De Boer, R.M. Smith, Fix and flap: the radical orthopaedic and plastic treatment of severe open fractures of the tibia. J. Bone Joint Surg. Br. 82(7), 959–966 (2000)

    Article  Google Scholar 

  46. J.F. Griffith, D.K. Yeung, P.H. Tsang, K.C. Choi, T.C. Kwok, A.T. Ahuja, K.S. Leung, P.C. Leung, Compromised bone marrow perfusion in osteoporosis. J. Bone Miner. Res. 23(7), 1068–1075 (2008)

    Article  Google Scholar 

  47. J.F. Griffith, Y.X. Wang, H. Zhou, W.H. Kwong, W.T. Wong, Y.L. Sun, Y. Huang, D.K. Yeung, L. Qin, A.T. Ahuja, Reduced bone perfusion in osteoporosis: likely causes in an ovariectomy rat model. Radiology 254(3), 739–746 (2010)

    Article  Google Scholar 

  48. M.W. Hamrick, Role for myokines in muscle-bone interactions. Exerc. Sport Sci. Rev. 39(1), 43–47 (2011)

    Article  Google Scholar 

  49. L.E. Harry, A. Sandison, E.M. Paleolog, U. Hansen, M.F. Pearse, J. Nanchahal, Comparison of the healing of open tibial fractures covered with either muscle or fasciocutaneous tissue in a murine model. J. Orthop. Res. 26(9), 1238–1244 (2008)

    Article  Google Scholar 

  50. T. Hayami, M. Pickarski, Y. Zhuo, G.A. Wesolowski, G.A. Rodan, L.T. Duong, Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis. Bone 38(2), 234–243 (2006)

    Article  Google Scholar 

  51. D.R. Haynes, T.N. Crotti, A.E. Potter, M. Loric, G.J. Atkins, D.W. Howie, D.M. Findlay, The osteoclastogenic molecules RANKL and RANK are associated with periprosthetic osteolysis. J. Bone Joint Surg. Br. 83(6), 902–911 (2001)

    Article  Google Scholar 

  52. D.J. Hunter, Y. Zhang, J. Niu, J. Goggins, S. Amin, M.P. LaValley, A. Guermazi, H. Genant, D. Gale, D.T. Felson, Increase in bone marrow lesions associated with cartilage loss: a longitudinal magnetic resonance imaging study of knee osteoarthritis. Arthritis Rheum. 54(5), 1529–1535 (2006)

    Article  Google Scholar 

  53. H. Imhof, I. Sulzbacher, S. Grampp, C. Czerny, S. Youssefzadeh, F. Kainberger, Subchondral bone and cartilage disease: a rediscovered functional unit. Invest. Radiol. 35(10), 581–588 (2000)

    Article  Google Scholar 

  54. H. Imhof, I.M. Nöbauer-Huhmann, C. Krestan, A. Gahleitner, I. Sulzbacher, S. Marlovits, S. Trattnig, MRI of the cartilage. Eur. Radiol. 12(11), 2781–2793 (2002)

    Google Scholar 

  55. K. Jähn, N. Lara-Castillo, L. Brotto, C.L. Mo, M.L. Johnson, M. Brotto, L.F. Bonewald, Skeletal muscle secreted factors prevent glucocorticoid-induced osteocyte apoptosis through activation of catenin. Eur. Cell Mater. 24, 197–209 (2012)

    Article  Google Scholar 

  56. B. Javaheri, A.R. Stern, N. Lara, M. Dallas, H. Zhao, Y. Liu, L.F. Bonewald, M.L. Johnson, Deletion of a single catenin allele in osteocytes abolishes the bone anabolic response to loading. J. Bone Miner. Res. 29(3), 705–715 (2014)

    Article  Google Scholar 

  57. R.C. Johnson, J.A. Leopold, J. Loscalzo, Vascular calcification: pathobiological mechanisms and clinical implications. Circ. Res. 99(10), 1044–1059 (2006)

    Article  Google Scholar 

  58. S. Judex, C.T. Rubin, Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J. Musculoskelet. Neuronal Interact. 10(1), 3–11 (2010)

    Google Scholar 

  59. G. Karsenty, M. Ferron, The contribution of bone to whole-organism physiology. Nature 481(7381), 314–320 (2012)

    Article  Google Scholar 

  60. H.Z. Ke, W.G. Richards, X. Li, M.S. Ominsky, Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases. Endocr. Rev. 33(5), 374–378 (2012)

    Article  Google Scholar 

  61. O.D. Kennedy, B.C. Herman, D.M. Laudier, R.J. Majeska, H.B. Sun, M.B. Schaffler, Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone 50(5), 1115–1122 (2012)

    Article  Google Scholar 

  62. O.D. Kennedy, D.M. Laudier, R.J. Majeska, H.B. Sun, M.B. Schaffler, Osteocyte apoptosis is required for production of osteoclastogenic signals following bone fatigue in vivo. Bone 64, 132–137 (2014)

    Article  Google Scholar 

  63. J.H. Keyak, A.K. Koyama, A. LeBlanc, Y. Lu, T.F. Lang, Reduction in proximal femoral strength due to long-duration spaceflight. Bone 44(3), 449–453 (2009)

    Article  Google Scholar 

  64. S. Khosla, J.J. Westendorf, M.J. Oursler, Building bone to reverse osteoporosis and repair fractures. J. Clin. Invest. 118(2), 421–428 (2008)

    Article  Google Scholar 

  65. T. Kiaer, N.W. Pedersen, K.D. Kristensen, H. Starklint, Intra-osseous pressure and oxygen tension in avascular necrosis and osteoarthritis of the hip. J. Bone Joint Surg. Br. 72(6), 1023–1030 (1990)

    Google Scholar 

  66. J. Klein-Nulend, A.D. Bakker, R.G. Bacabac, A. Vatsa, S. Weinbaum, Mechanosensation and transduction in osteocytes. J. Bone Miner. Res. 54(2), 182–190 (2013)

    Google Scholar 

  67. J.S. Kuliwaba, D.M. Findlay, G.J. Atkins, M.R. Forwood, N.L. Fazzalari, Enhanced expression of osteocalcin mrna in human osteoarthritic trabecular bone of the proximal femur is associated with decreased expression of interleukin-6 and interleukin-11 mRNA. J. Bone Miner. Res. 15(2), 332–341 (2000)

    Article  Google Scholar 

  68. A.P. Kusumbe, S.K. Ramasamy, R.H. Adams, Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. J. Bone Miner. Res. 507(7492), 323–328 (2014)

    Google Scholar 

  69. T.F. Lang, A.D. Leblanc, H.J. Evans, Y. Lu, Adaptation of the proximal femur to skeletal reloading after long-duration spaceflight. J. Bone Miner. Res. 21(8), 1224–1230 (2006)

    Article  Google Scholar 

  70. L.E. Lanyon, W.G. Hampson, A.E. Goodship, J.S. Shah, Bone deformation recorded in vivo from strain gauges attached to the human tibial shaft. Acta Orthop. Scand. 46(2), 256–268 (1975)

    Article  Google Scholar 

  71. L.L. Laslett, D.A. Doré, S.J. Quinn, P. Boon, E. Ryan, T.M. Winzenberg, G. Jones, Bone marrow edema pattern in osteoarthritic knees: correlation between MR imaging and histologic findings. Radiology 71(8), 1322–1328 (2012)

    Google Scholar 

  72. N.K. Lebrasseur, S.J. Achenbach, L.J. Melton 3rd, S. Amin, S. Khosla, Skeletal muscle mass is associated with bone geometry and microstructure and serum insulin-like growth factor binding protein-2 levels in adult women and men. J. Bone Miner. Res. 27(10), 2159–2169 (2012)

    Article  Google Scholar 

  73. J.H. Lee, J.P. Dyke, D. Ballon, D.M. Ciombor, M.P. Rosenwasser, R.K. Aaron, Subchondral fluid dynamics in a model of osteoarthritis: use of dynamic contrast-enhanced magnetic resonance imaging. Osteoarthr. Cartil. 17(10), 1350–1355 (2009)

    Article  Google Scholar 

  74. C. Lin, X. Jiang, Z. Dai, X. Guo, T. Weng, J. Wang, Y. Li, G. Feng, X. Gao, L. He, Sclerostin mediates bone response to mechanical unloading through antagonizing Wnt/beta-catenin signaling. J. Bone Miner. Res. 24(10), 1651–1661 (2009)

    Article  Google Scholar 

  75. R. Liu, O. Birke, A. Morse, L. Peacock, K. Mikulec, D.G. Little, A. Schindeler, Myogenic progenitors contribute to open but not closed fracture repair. BMC Musculoskelet. Disord. 12(1), 288–297 (2011)

    Article  Google Scholar 

  76. G.M. London, Soft bone - hard arteries: a link? Kidney Blood Press. Res. 34(4), 203–208 (2011)

    Article  Google Scholar 

  77. B.R. Macias, J.M. Swift, M.I. Nilsson, H.A. Hogan, S.D. Bouse, S.A. Bloomfield, Simulated resistance training, but not alendronate, increases cortical bone formation and suppresses sclerostin during disuse. J. Appl. Physiol. 112(5), 918–925 (2012)

    Article  Google Scholar 

  78. V. Mandalia, A.J. Fogg, R. Chari, J. Murray, A. Beale, J.H. Henson, Bone bruising of the knee. Clin. Radiol. 60(6), 627–636 (2005)

    Article  Google Scholar 

  79. P.I. Mapp, D.A. Walsh, Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat. Rev. Rheumatol. 8(7), 390–398 (2012)

    Article  Google Scholar 

  80. H. Mark, A. Penington, U. Nannmark, W. Morrison, A. Messina, Microvascular invasion during endochondral ossification in experimental fractures in rats. Bone 35(2), 535–542 (2004)

    Article  Google Scholar 

  81. S. Martelli, M.E. Kersh, A.G. Schache, M.G. Pandy, Strain energy in the femoral neck during exercise. J. Biomech. 47(8), 1784–1791 (2014a)

    Article  Google Scholar 

  82. S. Martelli, P. Pivonka, P.R. Ebeling, Femoral shaft strains during daily activities: implications for atypical femoral fractures. Clin. Biomech. (Bristol, Avon) 29(8), 869–876 (2014)

    Article  Google Scholar 

  83. T.J. Martin, Historically significant events in the discovery of RANK/RANKL/OPG. World J. Orthop. 4(4), 186–197 (2013)

    Article  Google Scholar 

  84. F. Massicotte, D. Lajeunesse, M. Benderdour, J.P. Pelletier, G. Hilal, N. Duval, J. Martel-Pelletier, Can altered production of interleukin-1beta, interleukin-6, transforming growth factor-beta and prostaglandin E(2) by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthr. Cartil. 10(6), 491–500 (2002)

    Article  Google Scholar 

  85. M.R. McClung, A. Grauer, S. Boonen, M.A. Bolognese, J.P. Brown, A. Diez-Perez, B.L. Langdahl, J.Y. Reginster, J.R. Zanchetta, S.M. Wasserman, L. Katz, J. Maddox, Y.C. Yang, C. Libanati, H.G. Bone, Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370(5), 412–420 (2014)

    Article  Google Scholar 

  86. C.W. McCutchen, The frictional properties of animal joints. Wear 5(1), 1–17 (1962)

    Article  Google Scholar 

  87. M.A. McGee, D.M. Findlay, D.W. Howie, A. Carbone, P. Ward, R. Stamenkov, T.T. Page, W.J. Bruce, C.I. Wildenauer, C. Toth, The use of op-1 in femoral impaction grafting in a sheep model. J. Orthop. Res. 22(5), 1008–1015 (2004)

    Article  Google Scholar 

  88. T. Miyazaki, F. Tokimura, S. Tanaka, A review of denosumab for the treatment of osteoporosis. Patient Prefer. Adher. 8, 463–471 (2014)

    Article  Google Scholar 

  89. Ch. Mo, S. Romero-Suarez, L.F. Bonewald, M.L. Johnson, M. Brotto, Prostaglandin E2: from clinical applications to its potential role in bone-muscle crosstalk and myogenic differentiation. Recent Pat. Biotechnol. 6(3), 223–229 (2012)

    Article  Google Scholar 

  90. J.F. Moller, K. Robertsen, C. Bunger, E.S. Hansen, Improved method for examination of microvascular structures in bone tissue. Clin. Orthop. 334, 15–23 (1997)

    Article  Google Scholar 

  91. N.C. Nowlan, C. Bourdon, G. Dumas, S. Tajbakhsh, P.J. Prendergast, P. Murphy, Developing bones are differentially affected by compromised skeletal muscle formation. Bone 46(5), 1275–1285 (2010)

    Article  Google Scholar 

  92. R.C. Olney, Regulation of bone mass by growth hormone. Med. Pediatr. Oncol. 41(3), 228–234 (2003)

    Article  Google Scholar 

  93. E. Ozcivici, Y.K. Luu, B. Adler, Y.X. Qin, J. Rubin, S. Judex, C.T. Rubin, Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6(1), 50–59 (2010)

    Article  Google Scholar 

  94. J. Pan, X. Zhou, W. Li, J.E. Novotny, S.B. Doty, L. Wang, In situ measurement of transport between subchondral bone and articular cartilage. J. Orthop. Res. 27(10), 1347–1352 (2009)

    Article  Google Scholar 

  95. F. Parhami, A.D. Morrow, J. Balucan, N. Leitinger, A.D. Watson, Y. Tintut, J.A. Berliner, L.L. Demer, Vascular calcification: pathobiological mechanisms and clinical implications. Arterioscler. Thromb. Vasc. Biol. 17(4), 680–687 (1997)

    Article  Google Scholar 

  96. M.F. Pittenger, A.M. Mackay, S.C. Beck, R.K. Jaiswal, R. Douglas, J.D. Mosca, M.A. Moorman, D.W. Simonetti, S. Craig, D.R. Marshak, Multilineage potential of adult human mesenchymal stem cells. Science 284(5411), 143–147 (1999)

    Article  Google Scholar 

  97. S. Priam, C. Bougault, X. Houard, M. Gosset, C. Salvat, F. Berenbaum, C. Jacques, Identification of soluble 14-3-3\(\epsilon \) as a novel subchondral bone mediator involved in cartilage degradation in osteoarthritis. Arthritis Rheum. 65(7), 1831–1842 (2013)

    Article  Google Scholar 

  98. R. Prisby, A. Guignandon, A. Vanden-Bossche, F. Mac-Way, M.T. Linossier, M. Thomas, N. Laroche, L. Malaval, M. Langer, Z.A. Peter, F. Peyrin, L. Vico, M.H. Lafage-Proust, Intermittent pth(1–84) is osteoanabolic but not osteo-angiogenic and relocates bone marrow blood vessels closer to bone-forming sites. J. Bone Miner. Res. 26(11), 2583–2596 (2011)

    Article  Google Scholar 

  99. R.D. Prisby, Bone marrow blood vessel ossification and ‘microvascular dead space’ in rat and human long bone. Bone 64, 195–203 (2014)

    Article  Google Scholar 

  100. H. Qing, L. Ardeshirpour, P.D. Pajevic, V. Dusevich, K. Jhn, S. Kato, J. Wysolmerski, L.F. Bonewald, Demonstration of osteocytic perilacunar-canalicular remodeling in mice during lactation. J. Bone Miner. Res. 27(5), 1018–1029 (2012)

    Article  Google Scholar 

  101. F. Rauch, D.A. Bailey, A. Baxter-Jones, R. Mirwald, R. Faulkner, The muscle-bone unit during the pubertal growth spurt. Bone 34(5), 771–775 (2004)

    Article  Google Scholar 

  102. F.W. Rhinelander, Circulation in bone, in The Biochemistry and Physiology of Bone, vol. II, ed. by G.H. Bourne (Academic Press, New York, 1972), pp. 2–78. (Chapter 1)

    Google Scholar 

  103. P.G. Robey, A.L. Boskey, The biochemistry of bone, in Osteoporosis, ed. by R. Marcus, D. Feldman, J. Kelsey (Academic Press, New York, 1996), pp. 95–156. (Chapter 4)

    Google Scholar 

  104. A.G. Robling, P.J. Niziolek, L.A. Baldridge, K.W. Condon, M.R. Allen, I. Alam, S.M. Mantila, J. Gluhak-Heinrich, T.M. Bellido, S.E. Harris, C.H. Turner, Mechanical stimulation of bone in vivo reduces osteocyte expression of sost/sclerostin. J. Biol. Chem. 283(9), 5866–5875 (2008)

    Article  Google Scholar 

  105. B. Roche, A. Vanden-Bossche, M. Normand, L. Malaval, L. Vico, M.H. Lafage-Proust, Validated laser doppler protocol for measurement of mouse bone blood perfusion - response to age or ovariectomy differs with genetic background. Bone 55(2), 418–426 (2013)

    Article  Google Scholar 

  106. B. Roche, A. Vanden-Bossche, L. Malaval, M. Normand, M. Jannot, R. Chaux, L. Vico, M.H. Lafage-Proust, Parathyroid hormone 1–84 targets bone vascular structure and perfusion in mice: impacts of its administration regimen and of ovariectomy. J. Bone Miner. Res. 29(7), 1608–1618 (2014)

    Article  Google Scholar 

  107. C.T. Rubin, A.S. Turner, R. Mller, E. Mittra, K. McLeod, W. Lin, Y.X. Qin, Quantity and quality of trabecular bone in the femur are enhanced by a strongly anabolic, noninvasive mechanical intervention. J. Bone Miner. Res. 17(2), 349–357 (2002)

    Article  Google Scholar 

  108. C. Sanchez, M.A. Deberg, N. Piccardi, P. Msika, J.Y. Reginster, Y.E. Henrotin, Osteoblasts from the sclerotic subchondral bone downregulate aggrecan but upregulate metalloproteinases expression by chondrocytes. this effect is mimicked by interleukin-6, -1\(\beta \) and oncostatin m pretreated non-sclerotic osteoblasts. Osteoarthr. Cartil. 13(11), 979–987 (2005)

    Article  Google Scholar 

  109. L.K. Saxon, C.H. Turner, Estrogen receptor beta: the antimechanostat? Bone 36(2), 185–192 (2005)

    Article  Google Scholar 

  110. P. Schneider, M. Stauber, R. Voide, M. Stampanoni, L.R. Donahue, R. Müller, Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J. Bone Miner. Res. 22(10), 1557–1570 (1997)

    Article  Google Scholar 

  111. E. Schulz, K. Arfai, X. Liu, J. Sayre, V. Gilsanz, Aortic calcification and the risk of osteoporosis and fractures. J. Clin. Endocrinol. Metab. 89(9), 4246–4253 (2004)

    Article  Google Scholar 

  112. U. Sennerby, H. Melhus, R. Gedeborg, L. Byberg, H. Garmo, A. Ahlbom, N.L. Pedersen, K. Michaëlsson, Cardiovascular diseases and risk of hip fracture. JAMA 302(15), 1666–1673 (2009)

    Article  Google Scholar 

  113. Z. Seref-Ferlengez, J. Basta-Pljakic, O.D. Kennedy, C.J. Philemon, M.B. Schaffler, Structural and mechanical repair of diffuse damage in cortical bone in vivo. J. Bone Miner. Res. 29(2), 2537–2544 (2014)

    Article  Google Scholar 

  114. D. Sharma, C. Ciani, P.A. Marin, J.D. Levy, S.B. Doty, S.P. Fritton, Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone 51(3), 488–497 (2012)

    Article  Google Scholar 

  115. Y.C. Shi, P.A. Baldock, Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 50(2), 430–436 (2012)

    Article  Google Scholar 

  116. L.B. Solomon, P.R. Boopalan, A. Chakrabarty, S.A. Callary, Can tibial plateau fractures be reduced and stabilised through an angiosome-sparing antero-lateral approach? Injury 45(4), 766–774 (2014)

    Google Scholar 

  117. W.S. Simonet, D.L. Lacey, C.R. Dunstan, M. Kelley, M.-S. Chang, R. Luthy et al., Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2), 309–319 (1997)

    Article  Google Scholar 

  118. N.S. Soysa, N. Alles, K. Aoki, K. Ohya, Osteoclast formation and differentiation: an overview. J. Med. Dent. Sci. 59(3), 65–74 (2012)

    Google Scholar 

  119. L. Sun, T.F. Davies, H.C. Blair, E. Abe, M. Zaidi, TSH and bone loss. Ann. N. Y. Acad. Sci. 309–318, 2006 (1068)

    Google Scholar 

  120. J.M. Swift, M.I. Nilsson, H.A. Hogan, L.R. Sumner, S.A. Bloomfield, Simulated resistance training during hindlimb unloading abolishes disuse bone loss and maintains muscle strength. J. Bone Miner. Res. 25(3), 564–574 (2010)

    Article  Google Scholar 

  121. S.Y. Tang, T. Alliston, Regulation of postnatal bone homeostasis by TGF. Bonekey Rep. 2, 255 (2013)

    Article  Google Scholar 

  122. Y. Tsuchiya, K. Sakuraba, E. Ochi, High force eccentric exercise enhances serum tartrate-resistant acid phosphatase-5b and osteocalcin. J. Musculoskelet. Neuronal Interact. 14(1), 50–57 (2014)

    Google Scholar 

  123. S.E. Utvag, K.B. Iversen, O. Grundnes, O. Reikeras, Poor muscle coverage delays fracture healing in rats. Acta Orthop. Scand. 73(4), 471–474 (2002)

    Article  Google Scholar 

  124. G. Vignaux, J. Ndong, D. Perrien, F. Elefteriou, Inner ear vestibular signals regulate bone remodeling via the sympathetic nervous system. J. Bone Miner. Res. 30(6), 1103–1111 (2015)

    Article  Google Scholar 

  125. B. Wang, X. Lai, C. Price, W.R. Thompson, W. Li, T.R. Quabili, W.J. Tseng, X.S. Liu, H. Zhang, J. Pan, C.B. Kirn-Safran, M.C. Farach-Carson, L. Wang, Perlecan-containing pericellular matrix regulates solute transport and mechano-sensing within the osteocytelacunar-canalicular system. J. Bone Miner. Res. 29(4), 878–891 (2014)

    Article  Google Scholar 

  126. J.M. Wozney, V. Rosen, A.J. Celeste, L.M. Mitsock, M.J. Whitters, R.W. Kriz, R.M. Hewick, E.A. Wang, Novel regulators of bone formation: molecular clones and activities. Science 242(4885), 1528–1534 (1988)

    Article  Google Scholar 

  127. L. Xie, A.S.P. Lin, K. Kundu, M.E. Levenston, N. Murthy, R.E. Guldberg, Quantitative imaging of cartilage and bone morphology, reactive oxygen species, and vascularization in a rodent model of osteoarthritis. Arthritis Rheum. 64(6), 1899–1908 (2012)

    Article  Google Scholar 

  128. L.D. You, S. Weinbaum, S.C. Cowin, M.B. Schaffler, Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. A Discov. Mol. Cell Evol. Biol. 278(2), 505–513 (2004)

    Article  Google Scholar 

  129. P.B. Yu, D.Y. Deng, C.S. Lai, C.C. Hong, G.D. Cuny, M.L. Bouxsein, D.W. Hong, P.M. McManus, T. Katagiri, C. Sachidanandan, N. Kamiya, T. Fukuda, Y. Mishina, R.T. Peterson, K.D. Bloch, BMP type I receptor inhibition reduces heterotopic ossification. Nat. Med. 14(12), 1363–1369 (2008)

    Article  Google Scholar 

  130. M. Zanetti, E. Bruder, J. Romero, J. Hodler, Bone marrow edema pattern in osteoarthritic knees: correlation between mr imaging and histologic findings. Radiology 215(3), 835–840 (2000)

    Article  Google Scholar 

  131. R. Zhang, H. Fang, Y. Chen, J. Shen, H. Lu, C. Zeng, J. Ren, H. Zeng, Z. Li, S. Chen, D. Cai, Q. Zhao, Gene expression analyses of subchondral bone in early experimental osteoarthritis by microarray. PLoS One 7(2), e32356 (2012)

    Article  Google Scholar 

  132. W. Zhang, Y. Zhang, Y. Liu, J. Wang, L. Gao, C. Yu, H. Yan, J. Zhao, J. Xu, Thyroid-stimulating hormone maintains bone mass and strength by suppressing osteoclast differentiation. J. Biomech. 47(6), 1307–1314 (2014)

    Article  Google Scholar 

  133. L. Zhao, J.W. Shim, T.R. Dodge, A.G. Robling, H. Yokota, Inactivation of Lrp5 in osteocytes reduces young’s modulus and responsiveness to the mechanical loading. Bone 54(1), 35–43 (2013)

    Article  Google Scholar 

  134. G. Zhen, C. Wen, X. Jia, Y. Li, J.L. Crane, S.C. Mears, F.B. Askin, F.J. Frassica, W. Chang, J. Yao, J.A. Carrino, A. Cosgarea, D. Artemov, Q. Chen, Z. Zhao, X. Zhou, L. Riley, P. Sponseller, M. Wan, W.W. Lu, X. Cao, Inhibition of tgf-\(\beta \) signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 19(6), 704–712 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

If you want to include acknowledgments of assistance and the like at the end of an individual chapter please use the acknowledgement environment – it will automatically render Springer’s preferred layout.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Findlay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Findlay, D.M. (2018). Biology of Bone and the Interaction of Bone with Other Organ Systems. In: Pivonka, P. (eds) Multiscale Mechanobiology of Bone Remodeling and Adaptation. CISM International Centre for Mechanical Sciences, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-58845-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58845-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58843-8

  • Online ISBN: 978-3-319-58845-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics