Skip to main content

Computational Biomechanics of Bone Adaptation by Remodeling

  • Chapter
  • First Online:
Multiscale Mechanobiology of Bone Remodeling and Adaptation

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 578))

Abstract

In bone remodeling, a variety of mechanical and biochemical signaling occurs among osteoclasts and osteoblasts, which are responsible for bone resorption and formation, and osteocytes, which are believed to have a mechanosensing function. Biomechanics research incorporating mathematical modeling and computer simulations is being conducted in order to understand the functional adaptation of bone structure by remodeling that can be observed at a macroscopic level resulted from the complex interaction among these signals at molecular and cellular levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sections 4 and 5 in this chapter were modified from Ref. [29] with permission from Springer.

  2. 2.

    Section 6 was modified from Ref. [32] with permission of Springer.

References

  1. L.F. Bonewald, M.L. Johnson, Osteocytes, mechanosensing and wnt signaling. Bone 42(4), 606–615 (2008)

    Article  Google Scholar 

  2. T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-Hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, J.M. Penninger, H. Takayanagi, Evidence for osteocyte regulation of bone homeostasis through rankl expression. Nat. Med. 17(10), 1231–1234 (2011)

    Article  Google Scholar 

  3. A. Mochizuki, M. Takami, Y. Miyamoto, T. Nakamaki, S. Tomoyasu, Y. Kadono, S. Tanaka, T. Inoue, R. Kamijo, Cell adhesion signaling regulates rank expression in osteoclast precursors. PLoS ONE 7(11), e48795 (2012)

    Article  Google Scholar 

  4. C.A. O’Brien, T. Nakashima, H. Takayanagi, Osteocyte control of osteoclastogenesis. Bone 54(2), 258–263 (2012)

    Article  Google Scholar 

  5. T. Adachi, Y. Kameo, M. Hojo, Trabecular bone remodelling simulation considering osteocytic response to fluid-induced shear stress. Philos. Trans. Royal Soc. a-Math. Phys. Eng. Sci. 368(1920), 2669–2682 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Kameo, T. Adachi, M. Hojo, Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation. J. Mech. Behav. Biomed. Mater. 4(6), 900–908 (2011)

    Article  Google Scholar 

  7. F.A. Schulte, A. Zwahlen, F.M. Lambers, G. Kuhn, D. Ruffoni, D. Betts, D.J. Webster, R. Muller, Strain-adaptive in silico modeling of bone adaptation a computer simulation validated by in vivo micro-computed tomography data. Bone 52(1), 485–492 (2013)

    Article  Google Scholar 

  8. T. Adachi, Y. Aonuma, K. Taira, M. Hojo, H. Kamioka, Asymmetric intercellular communication between bone cells: propagation of the calcium signaling. Biochem. Biophys. Res. Commun. 389(3), 495–500 (2009)

    Article  Google Scholar 

  9. L.F. Bonewald, The amazing osteocyte. J. Bone Miner. Res. 26(2), 229–238 (2011)

    Article  Google Scholar 

  10. P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R. Dunstan, N.A. Sims, T.J. Martin, G.R. Mundy, Model structure and control of bone remodeling: a theoretical study. Bone 43(2), 249–263 (2008)

    Article  Google Scholar 

  11. P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R. Dunstan, N.A. Sims, T.J. Martin, G.R. Mundy, Theoretical investigation of the role of the rank-rankl-opg system in bone remodeling. J. Theor. Biol. 262(2), 306–316 (2010)

    Article  Google Scholar 

  12. S. Weinbaum, S.C. Cowin, Y. Zeng, A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses. J. Biomech. 27(3), 339–360 (1994)

    Article  Google Scholar 

  13. J. KleinNulend, C.M. Semeins, N.E. Ajubi, P.J. Nijweide, E.H. Burger, Pulsating fluid flow increases nitric oxide (no) synthesis by osteocytes but not periosteal fibroblasts - correlation with prostaglandin upregulation. Biochem. Biophys. Res. Commun. 217(2), 640–648 (1995)

    Article  Google Scholar 

  14. T. Adachi, Y. Aonuma, M. Tanaka, M. Hojo, T. Takano-Yamamoto, H. Kamioka, Calcium response in single osteocytes to locally applied mechanical stimulus: differences in cell process and cell body. J. Biomech. 42(12), 1989–1995 (2009)

    Article  Google Scholar 

  15. R.Y. Kwon, D.R. Meays, A.S. Meilan, J. Jones, R. Miramontes, N. Kardos, J.C. Yeh, J.A. Frangos, Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. Plos One 7(3) (2012)

    Google Scholar 

  16. J. Klein-Nulend, A.D. Bakker, R.G. Bacabac, A. Vatsa, S. Weinbaum, Mechanosensation and transduction in osteocytes. Bone 54(2), 182–90 (2013)

    Article  Google Scholar 

  17. Y.F. Han, S.C. Cowin, M.B. Schaffler, S. Weinbaum, Mechanotransduction and strain amplification in osteocyte cell processes. Proc. Natl. Acad. Sci. U.S.A. 101(47), 16689–16694 (2004)

    Article  Google Scholar 

  18. X.L. Lu, B. Huo, M. Park, X.E. Guo, Calcium response in osteocytic networks under steady and oscillatory fluid flow. Bone 51(3), 466–473 (2012)

    Article  Google Scholar 

  19. R.Y. Kwon, S. Temiyasathit, P. Tummala, C.C. Quah, C.R. Jacobs, Primary cilium-dependent mechanosensing is mediated by adenylyl cyclase 6 and cyclic amp in bone cells. FASEB J. 24(8), 2859–2868 (2010)

    Article  Google Scholar 

  20. S. Temiyasathit, W.J. Tang, P. Leucht, C.T. Anderson, S.D. Monica, A.B. Castillo, J.A. Helms, T. Stearns, C.R. Jacobs, Mechanosensing by the primary cilium: deletion of kif3a reduces bone formation due to loading. Plos One 7(3), e33368 (2012)

    Article  Google Scholar 

  21. H.M. Frost, Bone mass and the mechanostat - a proposal. Anat. Rec. 219(1), 1–9 (1987)

    Article  Google Scholar 

  22. H.M. Frost, Defining osteopenias and osteoporoses: Another view (with insights from a new paradigm). Bone 20(5), 385–391 (1997)

    Article  Google Scholar 

  23. R. Huiskes, R. Ruimerman, G.H. van Lenthe, J.D. Janssen, Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405(6787), 704–706 (2000)

    Article  Google Scholar 

  24. H.M. Frost, Bone’ s mechanostat: a 2003 update. Anat. Rec. Part A 275A(2), 1081–1101 (2003)

    Article  Google Scholar 

  25. T. Adachi, Y. Tomita, H. Sakaue, M. Tanaka, Simulation of trabecular surface remodeling based on local stress nonuniformity. Jsme Int. J. Ser. C-Mech. Syst. Mach. Elem. Manuf. 40(4), 782–792 (1997)

    Article  Google Scholar 

  26. K. Tsubota, Y. Suzuki, T. Yamada, M. Hojo, A. Makinouchi, T. Adachi, Computer simulation of trablecular remodeling in human proximal femur using large-scale voxel fe models: Approach to understanding wolff’s law. J. Biomech. 42(8), 1088–1094 (2009)

    Article  Google Scholar 

  27. H. Kamioka, Y. Kameo, Y. Imai, A.D. Bakker, R.G. Bacabac, N. Yamada, A. Takaoka, T. Yamashiro, T. Adachi, J. Klein-Nulend, Microscale fluid flow analysis in a human osteocyte canaliculus using a realistic high-resolution image-based three-dimensional model. Integr. Biol. 4(10), 1198–1206 (2012)

    Article  Google Scholar 

  28. D. Sharma, C. Ciani, P.A.R. Marin, J.D. Levy, S.B. Doty, S.P. Fritton, Alterations in the osteocyte lacunar-canalicular microenvironment due to estrogen deficiency. Bone 51(3), 488–497 (2012)

    Article  Google Scholar 

  29. Y. Kameo, T. Adachi, Modeling trabecular bone adaptation to local bending load regulated by mechanosensing osteocytes. Acta Mech. 225(10), 2833–2840 (2014)

    Article  Google Scholar 

  30. Y. Kameo, T. Adachi, N. Sato, M. Hojo, Estimation of bone permeability considering the morphology of lacuno-canalicular porosity. J. Mech. Behav. Biomed. Mater. 3(3), 240–248 (2010)

    Article  Google Scholar 

  31. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed - algorithms based on hamilton-jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  32. Y. Kameo, T. Adachi, Interstitial fluid flow in canaliculi as a mechanical stimulus for cancellous bone remodeling: in silico validation. Biomech. Model. Mechanobiol. 13(4), 851–860 (2014)

    Article  Google Scholar 

  33. T. Beno, Y.J. Yoon, S.C. Cowin, S.P. Fritton, Estimation of bone permeability using accurate microstructural measurements. J. Biomech. 39(13), 2378–2387 (2006)

    Article  Google Scholar 

  34. T.H. Smit, J.M. Huyghe, S.C. Cowin, Estimation of the poroelastic parameters of cortical bone. J. Biomech. 35(6), 829–835 (2002)

    Article  Google Scholar 

  35. K. Tsubota, T. Adachi, Spatial and temporal regulation of cancellous bone structure: characterization of a rate equation of trabecular surface remodeling. Med. Eng. Phys. 27(4), 305–311 (2005)

    Article  Google Scholar 

  36. L.D. You, S. Weinbaum, S.C. Cowin, M.B. Schaffler, Ultrastructure of the osteocyte process and its pericellular matrix. Anat. Rec. Part a-Discov. Mol. Cell. Evol. Biol. 278A(2), 505–513 (2004)

    Article  Google Scholar 

  37. Z.F. Jaworski, E. Lok, Rate of osteoclastic bone erosion in haversian remodeling sites of adult dogs rib. Calcif. Tissue Res. 10(2), 103–112 (1972)

    Article  Google Scholar 

  38. B. Huo, X.L. Lu, C.T. Hung, K.D. Costa, Q.B. Xu, G.M. Whitesides, X.E. Guo, Fluid flow induced calcium response in bone cell network. Cell. Mol. Bioeng. 1(1), 58–66 (2008)

    Article  Google Scholar 

  39. S. Majumdar, M. Kothari, P. Augat, D.C. Newitt, T.M. Link, J.C. Lin, T. Lang, Y. Lu, H.K. Genant, High-resolution magnetic resonance imaging: Three-dimensional trabecular bone architecture and biomechanical properties. Bone 22(5), 445–454 (1998)

    Article  Google Scholar 

  40. R. Muller, T. Hildebrand, P. Ruegsegger, Noninvasive bone-biopsy - a new method to analyze and display the 3-dimensional structure of trabecular bone. Phys. Med. Biol. 39(1), 145–164 (1994)

    Article  Google Scholar 

  41. T. Adachi, K. Tsubota, Y. Tomita, S.J. Hollister, Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. J. Biomech. Eng.-Trans. ASME 123(5), 403–409 (2001)

    Article  Google Scholar 

  42. R. Ruimerman, P. Hilbers, B. van Rietbergen, R. Huiskes, A theoretical framework for strain-related trabecular bone maintenance and adaptation. J. Biomech. 38(4), 931–941 (2005)

    Article  Google Scholar 

  43. K. Tsubota, T. Adachi, Y. Tomita, Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. J. Biomech. 35(12), 1541–1551 (2002)

    Article  Google Scholar 

  44. I.G. Jang, I.Y. Kim, Computational study of wolff’s law with trabecular architecture in the human proximal femur using topology optimization. J. Biomech. 41(11), 2353–2361 (2008)

    Article  Google Scholar 

  45. S.C. Cowin, Bone poroelasticity. J. Biomech. 32(3), 217–238 (1999)

    Article  Google Scholar 

  46. Y. Kameo, T. Adachi, M. Hojo, Transient response of fluid pressure in a poroelastic material under uniaxial cyclic loading. J. Mech. Phys. Solids 56(5), 1794–1805 (2008)

    Article  MATH  Google Scholar 

  47. Y. Kameo, T. Adachi, M. Hojo, Fluid pressure response in poroelastic materials subjected to cyclic loading. J. Mech. Phys. Solids 57(11), 1815–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  48. F.A. Gerhard, D.J. Webster, G.H. van Lenthe, R. Muller, In silico biology of bone modelling and remodelling: adaptation. Philos. Trans. R. Soc. a-Math. Phys. Eng. Sci. 367(1895), 2011–2030 (2009)

    Article  Google Scholar 

  49. S.A. Goldstein, L.S. Matthews, J.L. Kuhn, S.J. Hollister, Trabecular bone remodeling - an experimental-model. J. Biomech. 24, 135–150 (1991)

    Article  Google Scholar 

  50. R.E. Guldberg, N.J. Caldwell, X.E. Guo, R.W. Goulet, S.J. Hollister, S.A. Goldstein, Mechanical stimulation of tissue repair in the hydraulic bone chamber. J. Bone Miner. Res. 12(8), 1295–1302 (1997)

    Article  Google Scholar 

  51. R.E. Guldberg, M. Richards, N.J. Caldwell, C.L. Kuelske, S.A. Goldstein, Trabecular bone adaptation to variations in porous-coated implant topology. J. Biomech. 30(2), 147–153 (1997)

    Article  Google Scholar 

  52. L.M. McNamara, P.J. Prendergast, Bone remodelling algorithms incorporating both strain and microdamage stimuli. J. Biomech. 40(6), 1381–1391 (2007)

    Article  Google Scholar 

  53. A.M. Parfitt, Osteonal and hemi-osteonal remodeling - the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55(3), 273–286 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiji Adachi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Adachi, T., Kameo, Y. (2018). Computational Biomechanics of Bone Adaptation by Remodeling. In: Pivonka, P. (eds) Multiscale Mechanobiology of Bone Remodeling and Adaptation. CISM International Centre for Mechanical Sciences, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-58845-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58845-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58843-8

  • Online ISBN: 978-3-319-58845-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics