Skip to main content

Musculoskeletal Modelling and the Physiome Project

  • Chapter
  • First Online:
Multiscale Mechanobiology of Bone Remodeling and Adaptation

Abstract

This chapter presents developments as part of the International Union of Physiological Sciences (IUPS) Physiome Project. Models are multiscale, multispatial and multiphysics, hence, suitable numerical tools and platforms have been developed to address these challenges for the musculoskeletal system. Firstly, we present modelling ontologies including several markup languages used to facilitate storage, sharing and exchange of numerical models. Secondly, custom software tools, CMISS and CMGUI, are then presented in the development of anatomically based geometrical models. Customisation methods are also presented to morph generic models into subject-specific representations. Thirdly, population based modelling and statistical shape analysis methods are presented as efficient techniques that harness the power of big data and imaging databases. These allow prediction of human anatomy from minimal geometric information. Fourthly, a specific example of our framework is presented in the context of a validated orthopaedic clinical tool used for assessing osteolytic defects around implants. Finally, EMG-informed muscle modelling is presented combined with medical imaging to better understand musculoskeletal injury. The problem of NaF PET CT is used to highlight the problem of patellofemoral pain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.J. Ackerman, The visible human project. Proc. IEEE 86(3), 504–511 (1998)

    Article  Google Scholar 

  2. J.L. Allen, R.R. Neptune, Three-dimensional modular control of human walking. J. Biomech. 45(12), 2157–63 (2012)

    Article  Google Scholar 

  3. D.C. Barratt, C.S. Chan, P.J. Edwards, G.P. Penney, M. Slomczykowski, T.J. Carter, D.J. Hawkes, Instantiation and registration of statistical shape models of the femur and pelvis using 3d ultrasound imaging. Med. Image Anal. 12, 358–374 (2008)

    Article  Google Scholar 

  4. F.T. Bergmann, H.M. Sauro, SBW - a modular framework for systems biology, in WSC ’06, Winter Simulation Conference, Monterey, California (2009)

    Google Scholar 

  5. T.F. Besier, G.E. Gold, G.S. Beaupre, S.L. Delp, A modeling framework to estimate patellofemoral joint cartilage stress in-vivo. Med. Sci. Sports Exerc. 37(11), 1924–1930 (2005)

    Article  Google Scholar 

  6. T.F. Besier, M. Fredericson, G.E. Gold, G.S. Beaupre, S.L. Delp, Knee muscle forces during walking and running in patellofemoral pain patients and pain-free controls. J. Biomech. 42(7), 898–905 (2009)

    Article  Google Scholar 

  7. B.J. Bornstein, S.M. Keating, A. Jouraku, M. Hucka, LibSBML: an API Library for SBML. Bioinformatics 24(6), 880–881 (2008)

    Article  Google Scholar 

  8. C.P. Bradley, A.J. Pullan, P.J. Hunter, Geometric modeling of the human torso using cubic hermite elements. Ann. Biomed. Eng. 25(1), 96–111 (1997)

    Article  Google Scholar 

  9. W.A.M. Brekelmans, H.W. Poort, T.J.J.H. Slooff, A new method to analyse the mechanical behaviour of skeletal parts. Acta Orthop. Scand. 43(5), 301–317 (1972)

    Article  Google Scholar 

  10. D.J. Brooks, BioSignalML: an abstract model for physiological time-series data. Thesis, ResearchSpace@Auckland (2013)

    Google Scholar 

  11. D.J. Brooks, P.J. Hunter, B.H. Smaill, M.R. Titchener, BioSignalML x2014; a meta-model for biosignals, in 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,EMBC, pp. 5670–5673 (2011)

    Google Scholar 

  12. R. Bryan, P.B. Nair, M. Taylor, Use of a statistical model of the whole femur in a large scale, multi-model study of femoral neck fracture risk. J. Biomech. 42(13), 2171–2176 (2009)

    Article  Google Scholar 

  13. R. Bryan, P.S. Mohan, A. Hopkins, F. Galloway, M. Taylor, P.B. Nair, Statistical modelling of the whole human femur incorporating geometric and material properties. Med. Eng. Phys. 32(1), 57–65 (2010)

    Article  Google Scholar 

  14. T.S. Buchanan, D.G. Lloyd, Muscle activity is different for humans performing static tasks which require force control and position control. Neurosci. Lett. 194(1–2), 61–64 (1995)

    Article  Google Scholar 

  15. T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier, Neuromusculoskeletal modeling: estimation of muscle forces and joint moments and movements from measurements of neural command. J. Appl. Biomech. 20(4), 367–395 (2004)

    Article  Google Scholar 

  16. T.S. Buchanan, D.G. Lloyd, K. Manal, T.F. Besier, Estimation of muscle forces and joint moments using a forward-inverse dynamics model. Med. Sci. Sports Exerc. 37(11), 1911–1916 (2005)

    Article  Google Scholar 

  17. D.R. Carter, G.S. Beaupre, Skeletal Function and Form. Mechanobiology of Skeletal Development, Aging and Regeneration (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  18. D.R. Carter, M.C. Van Der Meulen, G.S. Beaupre, Mechanical factors in bone growth and development. Bone 18(1 Suppl), 5S–10S (1996)

    Article  Google Scholar 

  19. D.R. Carter, G.S. Beaupre, M. Wong, R.L. Smith, T.P. Andriacchi, D.J. Schurman, R.L. Smith, The mechanobiology of articular cartilage development and degeneration. Clin. Orthop. 1(427 Suppl), S69–S77 (2004)

    Article  Google Scholar 

  20. G.R. Christie, P.M.F. Nielsen, S.A. Blackett, C.P. Bradley, P.J. Hunter, FieldML: concepts and implementation. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 367(1895), 1869–1884 (2009)

    Article  Google Scholar 

  21. D.D. Cody, G.J. Gross, F.J. Hou, H.J. Spencer, S.A. Goldstein, D.P. Fyhrie, Femoral strength is better predicted by finite element models than QCT and DXA. J. Biomech. 32(10), 1013–1020 (1999)

    Article  Google Scholar 

  22. M.T. Cooling, V. Rouilly, G. Misirli, J. Lawson, T. Yu, J. Hallinan, A. Wipat, Standard virtual biological parts: a repository of modular modeling components for synthetic biology. Bioinformatics 26(7), 925–931 (2010)

    Article  Google Scholar 

  23. T.F. Cootes, C.J. Taylor, D.H. Cooper, J. Graham et al., Active shape models-their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995)

    Article  Google Scholar 

  24. D.M. Corcos, G.L. Gottlieb, M.L. Latash, G.L. Almeida, G.C. Agarwal, Electromechanical delay: an experimental artifact. J. Electromyogr. Kinesiol. 2(2), 59–68 (1992)

    Article  Google Scholar 

  25. M. Courtot, N. Juty, C. Knpfer, D. Waltemath, A. Zhukova, A. Drger, M. Dumontier, A. Finney, M. Golebiewski, J. Hastings, S. Hoops, S. Keating, D.B. Kell, S. Kerrien, J. Lawson, A. Lister, J. Lu, R. Machne, P. Mendes, M. Pocock, N. Rodriguez, A. Villeger, D.J. Wilkinson, S. Wimalaratne, C. Laibe, M. Hucka, N.L. Novre, Controlled vocabularies and semantics in systems biology. Mol. Syst. Biol. 7(543), 1–12 (2011)

    Google Scholar 

  26. A.A. Cuellar, C.M. Lloyd, P.F. Nielsen, D.P. Bullivant, D.P. Nickerson, P.J. Hunter, An overview of cellML 1.1, a biological model description language. Simulation 79(12), 740–747 (2003)

    Article  Google Scholar 

  27. S. Dambreville, Y. Rathi, A. Tannenbaum, A framework for image segmentation using shape models and kernel space shape priors. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1385–1399 (2008)

    Article  Google Scholar 

  28. S.J. De Serres, T.E. Milner, Wrist muscle activation patterns and stiffness associated with stable and unstable mechanical loads. Exp. Brain Res. 86(2), 451–458 (1991)

    Article  Google Scholar 

  29. S.L. Delp, F.C. Anderson, A.S. Arnold, P. Loan, A. Habib, C.T. John, E. Guendelman, D.G. Thelen, OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007)

    Article  Google Scholar 

  30. C.J. Donnelly, D.G. Lloyd, B.C. Elliott, J.A. Reinbolt, Optimizing whole body kinematics to minimize valgus knee loading during sidestepping: implications for ACL injury risk. J. Biomech. 45(8), 1491–1497 (2012)

    Article  Google Scholar 

  31. R.L. Drake (ed.), Terminologia Anatomica: International Anatomical Terminology, 2nd edn. (Thieme, Stuttgart, 2011)

    Google Scholar 

  32. C.E. Draper, A. Quon, M. Fredericson, T.F. Besier, S.L. Delp, G.S. Beaupre, G.E. Gold, Comparison of MRI and (18) F-NaF PET/CT in patients with patellofemoral pain. J. Magn. Reson. Imaging 36(4), 928–932 (2012)

    Article  Google Scholar 

  33. I.L. Dryden, K.V. Mardia, Statistical Shape Analysis, 1st edn. (Wiley, Oxford, 2001)

    MATH  Google Scholar 

  34. J. Fernandez, M. Sartori, D. Lloyd, J. Munro, V. Shim, Bone remodelling in the natural acetabulum is influenced by muscle force-induced bone stress. Int. J. Numer. Method Biomed. Eng. 30(1), 28–41 (2014)

    Article  MathSciNet  Google Scholar 

  35. J.W. Fernandez, P. Mithraratne, S.F. Thrupp, M.H. Tawhai, P.J. Hunter, Anatomically based geometric modelling of the musculo-skeletal system and other organs. Biomech. Model. Mechanobiol. 2(3), 139–155 (2004)

    Article  Google Scholar 

  36. J.W. Fernandez, A. Ho, S. Walt, I.A. Anderson, P.J. Hunter, A cerebral palsy assessment tool using anatomically based geometries and free-form deformation. Biomech. Model. Mechanobiol. 4(1), 39–56 (2005)

    Article  Google Scholar 

  37. B.J. Fregly, T.F. Besier, D.G. Lloyd, S.L. Delp, S.A. Banks, M.G. Pandy, D.D. D’Lima, Grand challenge competition to predict in vivo knee loads. J. Orthop. Res. 30(4), 503–513 (2012)

    Article  Google Scholar 

  38. J. Fripp, S. Crozier, S.K. Warfield, S. Ourselin, Automatic segmentation of the bone and extraction of the bone-cartilage interface from magnetic resonance images of the knee. Phys. Med. Biol. 52(6), 1617–1631 (2007)

    Article  Google Scholar 

  39. B.A. Garner, M.G. Pandy, The obstacle-set method for representing muscle paths in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 3(1), 1–30 (2000)

    Article  Google Scholar 

  40. A. Garny, D.P. Nickerson, J. Cooper, R. Weber dos Santos, A.K. Miller, S. McKeever, P.M.F. Nielsen, P.J. Hunter, CellML and associated tools and techniques. Philos. Trans. Ser. A Math. Phys. Eng. Sci. 366(1878), 3017–3043 (2008)

    Article  Google Scholar 

  41. P. Gerus, M. Sartori, T.F. Besier, B.J. Fregly, S.L. Delp, S.A. Banks, M.G. Pandy, D.D. D’Lima, D.G. Lloyd, Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces. J. Biomech. 46(16), 2778–2786 (2013)

    Article  Google Scholar 

  42. H. Gray, Gray’s Anatomy: The Anatomical Basis of Clinical Practice, 40th edn. (Churchill-Livingstone, Elsevier, 2008)

    Google Scholar 

  43. J. Gregory, R.M. Aspden, Femoral geometry as a risk factor for osteoporotic hip fracture in men and women. Med. Eng. Phys. 30(10), 1275–1286 (2008)

    Article  Google Scholar 

  44. A.C. Guimaraes, W. Herzog, M. Hulliger, Y.T. Zhang, S. Day, Effects of muscle length on the EMG-force relationship of the cat soleus muscle studied using non-periodic stimulation of ventral root filaments. J. Exp. Biol. 193, 49–64 (1994)

    Google Scholar 

  45. H. Hatze, Estimation of myodynamic parameter values from observations on isometrically contracting muscle groups. Eur. J. Appl. Physiol. Occup. Physiol. 46(4), 325–338 (1981)

    Article  Google Scholar 

  46. T.L. Heiden, D.G. Lloyd, T.R. Ackland, Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clin. Biomech. (Bristol) 24(10), 833–841 (2009)

    Article  Google Scholar 

  47. T. Heidlauf, O. Rohrle, Modeling the chemoelectromechanical behavior of skeletal muscle using the parallel open-source software library OpenCMISS. Comput. Math. Methods Med. 2013, 1–14 (2013)

    Article  MATH  Google Scholar 

  48. T. Heimann, H.-P. Meinzer, Statistical shape models for 3D medical image segmentation: a review. Med. Image Anal. 13(4), 543–563 (2009)

    Article  Google Scholar 

  49. R. Heine, K. Manal, T.S. Buchanan, Using Hill-type muscle models and EMG data in a forward dynamic analysis of joint moment: evaluation of critical parameters. J. Mech. Med. Biol. 3(2), 169–186 (2003)

    Article  Google Scholar 

  50. R. Henkel, L. Endler, A. Peters, N.L. Novre, D. Waltemath, Ranked retrieval of computational biology models. BMC Bioinform. 11(1), 1–12 (2010)

    Article  Google Scholar 

  51. W. Herzog, J. Sokolosky, Y.T. Zhang, A.C. Guimaraes, Emg-force relation in dynamically contracting cat plantaris muscle. J. Electromyogr. Kinesiol. 8(3), 147–155 (1998)

    Article  Google Scholar 

  52. W. Herzog, D. Longino, A. Clark, The role of muscles in joint adaptation and degeneration. Langenbecks Arch. Surg. 388(5), 305–315 (2003)

    Article  Google Scholar 

  53. A.V. Hill, The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126(843), 136–195 (1938)

    Article  Google Scholar 

  54. A.L. Hof, J. Van den Berg, EMG to force processing I: an electrical analogue of the Hill muscle model. J. Biomech. 14(11), 747–758 (1981)

    Article  Google Scholar 

  55. N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscle. IEEE Trans. Autom. Control 29(8), 681–690 (1984)

    Article  MATH  Google Scholar 

  56. G. Holzer, G. Von Skrbensky, L.A. Holzer, W. Pichl, Hip fractures and the contribution of cortical versus trabecular bone to femoral neck strength. J. Bone Miner. Res. 24, 468–474 (2009)

    Article  Google Scholar 

  57. S. Hoops, S. Sahle, R. Gauges, C. Lee, J. Pahle, N. Simus, M. Singhal, L. Xu, P. Mendes, U. Kummer, COPASIa COmplex PAthway SImulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  58. T. Hortobagyi, L. Westerkamp, S. Beam, J. Moody, J. Garry, D. Holbert, P. DeVita, Altered hamstring-quadriceps muscle balance in patients with knee osteoarthritis. Clin. Biomech. (Bristol) 20(1), 97–104 (2005)

    Article  Google Scholar 

  59. D.W. Howie, S.D. Neale, R. Stamenkov, M.A. McGee, D.J. Taylor, D.M. Findlay, Progression of acetabular periprosthetic osteolytic lesions measured with computed tomography. J. Bone Joint Surg. Am. 89(8), 1818–1825 (2007)

    Google Scholar 

  60. W.K. Hsu, B.T. Feeley, L. Krenek, D.B. Stout, A.F. Chatziioannou, J.R. Lieberman, The use of 18F-fluoride and 18F-FDG PET scans to assess fracture healing in a rat femur model. Eur. J. Nucl. Med. Mol. Imaging 34(8), 1291–1301 (2007)

    Article  Google Scholar 

  61. C. Hubley-Kozey, K. Deluzio, M. Dunbar, Muscle co-activation patterns during walking in those with severe knee osteoarthritis. Clin. Biomech. (Bristol) 23(1), 71–80 (2008)

    Article  Google Scholar 

  62. C.L. Hubley-Kozey, K.J. Deluzio, S.C. Landry, J.S. McNutt, W.D. Stanish, Neuromuscular alterations during walking in persons with moderate knee osteoarthritis. J. Electromyogr. Kinesiol. 16(4), 365–378 (2006)

    Article  Google Scholar 

  63. M. Hucka, A. Finney, H.M. Sauro, H. Bolouri, J.C. Doyle, H. Kitano, A.P. Arkin, B.J. Bornstein, D. Bray, A. Cornish-Bowden, A.A. Cuellar, S. Dronov, E.D. Gilles, M. Ginkel, V. Gor, I.I. Goryanin, W.J. Hedley, T.C. Hodgman, J.H. Hofmeyr, P.J. Hunter, N.S. Juty, J.L. Kasberger, A. Kremling, U. Kummer, N. Le Novre, L.M. Loew, D. Lucio, P. Mendes, E. Minch, E.D. Mjolsness, Y. Nakayama, M.R. Nelson, P.F. Nielsen, T. Sakurada, J.C. Schaff, B.E. Shapiro, T.S. Shimizu, H.D. Spence, J. Stelling, K. Takahashi, M. Tomita, J. Wagner, J. Wang, The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  64. P.A. Huijing, Important experimental factors for skeletal muscle modelling: non-linear changes of muscle length force characteristics as a function of degree of activity. Eur. J. Morphol. 34(1), 47–54 (1996)

    Article  Google Scholar 

  65. R. Huiskes, E.Y.S. Chao, A survey of finite element analysis in orthopedic biomechanics \(-\) the first decade. J. Biomech. 16(6), 385–409 (1983)

    Article  Google Scholar 

  66. R. Huiskes, S.J. Hollister, From structure to process, from organ to cell: recent developments of FE-analysis in orthopaedic biomechanics. J. Biomech. Eng. 115(4B), 520–527 (1993)

    Article  Google Scholar 

  67. P.J. Hunter, The IUPS Physiome Project: a framework for computational physiology. Prog. Biophys. Mol. Biol. 85(2–3), 551–569 (2004)

    Article  Google Scholar 

  68. J.J. Jacobs, K.A. Roebuck, M. Archibeck, N.J. Hallab, T.T. Glant, Osteolysis: basic science. Clin. Orthop. Relat. Res. 1(393), 71–77 (2001)

    Article  Google Scholar 

  69. I. Jolliffe, Principal component analysis, in Encyclopedia of Statistics in Behavioral Science, vol. 3, 1st edn., ed. by B.S. Everitt, D.C. Howell (Wiley, 2005), pp. 1580–1584

    Google Scholar 

  70. D. Kainmueller, H. Lamecker, S. Zachow, H.-C. Hege, An articulated statistical shape model for accurate hip joint segmentation. EMBC 2009. Annu. Int. Conf. IEEE 2009, 6345–6351 (2009)

    Google Scholar 

  71. J.H. Keyak, J.M. Meagher, H.B. Skinner Jr., C.D. Mote, Automated three-dimensional finite element modelling of bone: a new method. J. Biomed. Eng. 12(5), 389–397 (1990)

    Article  Google Scholar 

  72. J.H. Keyak, S.A. Rossi, K.A. Jones, H.B. Skinner, Prediction of femoral fracture load using automated finite element modeling. J. Biomech. 31(2), 125–133 (1998)

    Article  Google Scholar 

  73. J.H. Keyak, S.A. Rossi, K.A. Jones, C.M. Les, H.B. Skinner, Prediction of fracture location in the proximal femur using finite element models. Med. Eng. Phys. 23(9), 657–664 (2001)

    Article  Google Scholar 

  74. R. Lim, F.H. Fahey, L.A. Drubach, L.P. Connolly, S.T. Treves, Early experience with fluorine-18 sodium fluoride bone PET in young patients with back pain. J. Pediatr. Orthop. 27(3), 277–282 (2007)

    Article  Google Scholar 

  75. C.M. Lloyd, J.R. Lawson, P.J. Hunter, P.F. Nielsen, The CellML Model Repository. Bioinformatics 24(18), 2122–2123 (2008)

    Article  Google Scholar 

  76. D.G. Lloyd, T.F. Besier, An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 36(6), 765–776 (2003)

    Article  Google Scholar 

  77. D.G. Lloyd, T.S. Buchanan, Strategies of muscular support of varus and valgus isometric loads at the human knee. J. Biomech. 34(10), 1257–1267 (2001)

    Article  Google Scholar 

  78. A.C. Looker, T.J. Beck, E.S. Orwoll, Does body size account for gender differences in femur bone density and geometry? J. Bone Miner. Res. 16, 1291–1299 (2001)

    Article  Google Scholar 

  79. D.B. Mach, S.D. Rogers, M.C. Sabino, N.M. Luger, M.J. Schwei, J.D. Pomonis, C.P. Keyser, D.R. Clohisy, D.J. Adams, P. O’Leary, P.W. Mantyh, Origins of skeletal pain: sensory and sympathetic innervation of the mouse femur. Neuroscience 113(1), 155–166 (2002)

    Article  Google Scholar 

  80. K. Manal, T.S. Buchanan, A one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyograms. J. Biomech. 36(8), 1197–1202 (2003)

    Article  Google Scholar 

  81. P.M. Mayhew, C.D.L. Thomas, J.G. Clement, N. Loveridge, T.J. Beck, W. Bonfield, C.J. Burgoyne, J. Reeve, Relation between age, femoral neck cortical stability, and hip fracture risk. The Lancet 366, 129–135 (2005)

    Article  Google Scholar 

  82. A.K. Miller, J. Marsh, A. Reeve, A. Garny, R. Britten, M. Halstead, J. Cooper, D.P. Nickerson, P.F. Nielsen, An overview of the CellML API and its implementation. BMC Bioinform. 11(178), 1–12 (2010)

    Google Scholar 

  83. H.S. Milner-Brown, R.B. Stein, R. Yemm, Changes in firing rate of human motor units during linearly changing voluntary contractions. J. Physiol. 230(2), 371–390 (1973)

    Article  Google Scholar 

  84. T. Miyazaki, M. Wada, H. Kawahara, M. Sato, H. Baba, S. Shimada, Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis. Ann. Rheum. Dis. 61(7), 617–622 (2002)

    Article  Google Scholar 

  85. J.T. Munro, I.A. Anderson, C.G. Walker, V.B. Shim, Finite element analysis of retroacetabular osteolytic defects following total hip replacement. J. Biomech. 46(14), 2529–2533 (2013)

    Article  Google Scholar 

  86. T. Nakamura, C.H. Turner, T. Yoshikawa, C.W. Slemenda, M. Peacock, D.B. Burr, Y. Mizuno, H. Orimo, Y. Ouchi, C.C. Johnston Jr., Do variations in hip geometry explain differences in hip fracture risk between Japanese and white Americans? J. Bone Miner. Res. 9, 1071–1076 (1994)

    Article  Google Scholar 

  87. M.L. Neal, M.T. Cooling, L.P. Smith, C.T. Thompson, H.M. Sauro, B.E. Carlson, D.L. Cook, J.H. Gennari, A reappraisal of how to build modular, reusable models of biological systems. PLoS Comput. Biol. 10(10), 1–7 (2014)

    Article  Google Scholar 

  88. R.R. Neptune, D.J. Clark, S.A. Kautz, Modular control of human walking: a simulation study. J. Biomech. 42(9), 1282–1287 (2009)

    Article  Google Scholar 

  89. D. Nickerson, M. Nash, P. Nielsen, N. Smith, P. Hunter, Computational multiscale modeling in the iups physiome project: modeling cardiac electromechanics. IBM J. Res. Dev. 50(6), 617–630 (2006)

    Article  Google Scholar 

  90. D.P. Nickerson, J.R. Terkildsen, K.L. Hamilton, P.J. Hunter, A tool for multi-scale modelling of the renal nephron. Interface Focus 1(3), 417–425 (2011)

    Article  Google Scholar 

  91. N.L. Novre, A. Finney, M. Hucka, U.S. Bhalla, F. Campagne, J. Collado-Vides, E.J. Crampin, M. Halstead, E. Klipp, P. Mendes, P. Nielsen, H. Sauro, B. Shapiro, J.L. Snoep, H.D. Spence, B.L. Wanner, Minimum information requested in the annotation of biochemical models (MIRIAM). Nat. Biotechnol. 23(12), 1509–1515 (2005)

    Article  Google Scholar 

  92. N.L. Novre, B. Bornstein, A. Broicher, M. Courtot, M. Donizelli, H. Dharuri, L. Li, H. Sauro, M. Schilstra, B. Shapiro, J.L. Snoep, M. Hucka, Biomodels database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34(suppl 1), D689–D691 (2006)

    Article  Google Scholar 

  93. K. Oberhofer, K. Mithraratne, N.S. Stott et al., Anatomically-based musculoskeletal modeling: prediction and validation of muscle deformation during walking. Vis. Comput. 25, 843 (2009). doi:10.1007/s00371-009-0314-8

  94. R.E. Outerbridge, The etiology of chondromalacia patellae. J. Bone Joint. Surg. Br. 43–B, 752–757 (1961)

    Google Scholar 

  95. J. Partanen, T. Jms, P. Jalovaara, Influence of the upper femur and pelvic geometry on the risk and type of hip fractures. J. Bone Miner. Res. 16, 1540–1546 (2001)

    Article  Google Scholar 

  96. M. Peacock, K.A. Buckwalter, S. Persohn, T.N. Hangartner, M.J. Econs, S. Hui, Race and sex differences in bone mineral density and geometry at the femur. Bone 45, 218–225 (2009)

    Article  Google Scholar 

  97. D.R. Pedersen, R.A. Brand, C. Cheng, J.S. Arora, Direct comparison of muscle force predictions using linear and nonlinear programming. J. Biomech. Eng. 109(3), 192–199 (1987)

    Article  Google Scholar 

  98. D.A. Pierce, D.L. Preston, Radiation-related cancer risks at low doses among atomic bomb survivors. Radiat. Res. 154, 178–186 (2000)

    Article  Google Scholar 

  99. R.P. Pitto, A. Hayward, C. Walker, V.B. Shim, Femoral bone density changes after total hip arthroplasty with uncemented taper-design stem: a five year follow-up study. Int. Orthop. 34(6), 783–787 (2010)

    Article  Google Scholar 

  100. J.R. Potvin, R.W. Norman, S.M. McGill, Mechanically corrected emg for the continuous estimation of erector spinae muscle loading during repetitive lifting. Eur. J. Appl. Physiol. Occup. Physiol. 74(1–2), 119–132 (1996)

    Article  Google Scholar 

  101. P.E. Purdue, P. Koulouvaris, H.G. Potter, B.J. Nestor, T.P. Sculco, The cellular and molecular biology of periprosthetic osteolysis. Clin. Orthop. Relat. Res. 454, 251–61 (2007)

    Article  Google Scholar 

  102. T.A. Quinn, S. Granite, M.A. Allessie, C. Antzelevitch, C. Bollensdorff, G. Bub, R.A.B. Burton, E. Cerbai, P.S. Chen, M. Delmar, D. DiFrancesco, Y.E. Earm et al., Minimum information about a cardiac electrophysiology experiment (MICEE): Standardised reporting for model reproducibility, interoperability, and data sharing. Prog. Biophys. Mol. Biol. 107(1), 4–10 (2011)

    Article  Google Scholar 

  103. K.T. Rajamani, M.A. Styner, H. Talib, G. Zheng, L.P. Nolte, M.A. Gonzalez Ballester, Statistical deformable bone models for robust 3D surface extrapolation from sparse data. Med. Image Anal. 11, 99–109 (2007)

    Article  Google Scholar 

  104. A.J. Ramme, A.J. Criswell, B.R. Wolf, V.A. Magnotta, N.M. Grosland, EM segmentation of the distal femur and proximal tibia: a high-throughput approach to anatomic surface generation. Ann. Biomed. Eng. 39, 1555–1562 (2011)

    Article  Google Scholar 

  105. M.M. Rehani, G. Bongartz, W. Kalender, Managing X-ray dose in computed tomography. ICRP special task force report. Ann. ICRP 30, 7–45 (2000)

    Google Scholar 

  106. N. Rodriguez, M. Donizelli, N.L. Novre, SBMLeditor: effective creation of models in the Systems Biology Markup Language (SBML). BMC Bioinform. 8(79), 1–8 (2007)

    Article  Google Scholar 

  107. D. Rueckert, A.F. Frangi, J.A. Schnabel, Automatic construction of 3D statistical deformation models of the brain using nonrigid registration. IEEE Trans. Med. Imaging 22(8), 1014–1025 (2003)

    Article  Google Scholar 

  108. M. Sartori, M. Reggiani, D. Farina, D.G. Lloyd, Emg-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity. PLoS ONE 7(12), 1–11 (2012)

    Article  Google Scholar 

  109. M. Sartori, L. Gizzia, D.G. Lloyd, D. Farina, A musculoskeletal model of human locomotion driven by a low dimensional set of impulsive excitation primitives. Front. Comput. Neurosci. 7(79), 1–22 (2013)

    Google Scholar 

  110. M. Sartori, D. Farina, D.G. Lloyd, Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization. J. Biomech. 47(15), 3613–3621 (2014)

    Article  Google Scholar 

  111. O.D. Schipplein, T.P. Andriacchi, Interaction between active and passive knee stabilizers during level walking. J. Orthop. Res. 9(1), 113–119 (1991)

    Article  Google Scholar 

  112. R. Schmidt, L. Muller, A. Kress, H. Hirschfelder, A. Aplas, R.P. Pitto, A computed tomography assessment of femoral and acetabular bone changes after total hip arthroplasty. Int. Orthop. (SICOT) 26(5), 299–302 (2002)

    Article  Google Scholar 

  113. H. Seim, D. Kainmueller, M. Heller, H. Lamecker, S. Zachow, H.C. Hege, Automatic segmentation of the pelvic bones from ct data based on a statistical shape model, in EG VCBM’08 Proceedings of the First Eurographics conference on Visual Computing for Biomedicine (2008)

    Google Scholar 

  114. A. Seireg, R.J. Arvikar, A mathematical model for evaluation of forces in lower extremeties of the musculo-skeletal system. J. Biomech. 6(3), 313–326 (1973)

    Article  Google Scholar 

  115. M.A. Sevcik, N.M. Luger, D.B. Mach, M.A. Sabino, C.M. Peters, J.R. Ghilardi, M.J. Schwei, H. Rohrich, C. De Felipe, M.A. Kuskowski, P.W. Mantyh, Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain 111(1–2), 169–180 (2004)

    Article  Google Scholar 

  116. M.A. Sherman, A. Seth, S.L. Delp, Simbody: multibody dynamics for biomedical research. Iutam Symp. Hum. Body Dyn. 2, 241–261 (2011)

    Google Scholar 

  117. V.B. Shim, R.P. Pitto, R.M. Streicher, P.J. Hunter, I.A. Anderson, The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis. J. Biomech. 40(1), 26–35 (2007)

    Article  Google Scholar 

  118. V.B. Shim, R.P. Pitto, R.M. Streicher, P.J. Hunter, I.A. Anderson, Development and validation of patient-specific finite element models of the hemipelvis generated from a sparse CT data set. J. Biomech. Eng. 130(5), 1–11 (2008)

    Article  Google Scholar 

  119. V.B. Shim, M. Battley, I.A. Anderson, J.T. Munro, Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone. Comput. Methods Biomech. Biomed. Eng. 18(14), 1495–1499 (2015)

    Article  Google Scholar 

  120. P. Shull, A. Silder, R. Shultz, T. Besier, S. Delp, M. Cutkosky, Six-week gait retraining program for knee osteoarthritis patients: Learning retention and symptom changes, in American Society of Biomechanics (2012)

    Google Scholar 

  121. N.P. Smith, D.P. Nickerson, E.J. Crampin, P.J. Hunter, Multiscale computational modelling of the heart. Acta Numer. 13, 371–431 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  122. V.M. Spitzer, D. Whitlock, A.L. Scherzinger, M.J. Ackerman, The visible-human (male and female). Radiology 197, 533–533 (1995)

    Article  Google Scholar 

  123. R. Stamenkov, D. Howie, J. Taylor, D. Findlay, M. McGee, G. Kourlis, A. Carbone, M. Burwell, Measurement of bone defects adjacent to acetabular components of hip replacement. Clin. Orthop. Relat. Res. 7(412), 117–124 (2003)

    Article  Google Scholar 

  124. E. Stindel, J.L. Briard, P. Merloz, S. Plaweski, F. Dubrana, C. Lefevre, J. Troccaz, Bone morphing: 3D morphological data for total knee arthroplasty. Comput. Aided Surg. 7, 156–168 (2002)

    Article  Google Scholar 

  125. D.L. Sturnieks, T.F. Besier, D.G. Lloyd, Muscle activations to stabilize the knee following arthroscopic partial meniscectomy. Clin. Biomech. (Bristol) 26(3), 292–297 (2011)

    Article  Google Scholar 

  126. A. Suinesiaputra, A.F. Frangi, T.A. Kaandorp, H.J. Lamb, J.J. Bax, J.H. Reiber, B.P. Lelieveldt, Automated detection of regional wall motion abnormalities based on a statistical model applied to multislice short-axis cardiac MR images. IEEE Trans. Med. Imaging 28, 595–607 (2009)

    Article  Google Scholar 

  127. J.E. Taunton, M.B. Ryan, D.B. Clement, D.C. McKenzie, D.R. Lloyd-Smith, B.D. Zumbo, A retrospective case-control analysis of 2002 running injuries. Br. J. Sports Med. 36(2), 95–101 (2002)

    Article  Google Scholar 

  128. A.A. Tax, J.J. Denier van der Gon, C.C. Gielen, C.M. van den Tempel, Differences in the activation of m. biceps brachii in the control of slow isotonic movements and isometric contractions. Exp. Brain Res. 76(1), 55–63 (1989)

    Article  Google Scholar 

  129. A.A. Tax, J.J. Denier van der Gon, C.J. Erkelens, Differences in coordination of elbow flexor muscles in force tasks and in movement tasks. Exp. Brain Res. 81(3), 567–572 (1990)

    Article  Google Scholar 

  130. A.A. Tax, J.J. Denier van der Gon, C.C. Gielen, M. Kleyne, Differences in central control of m. biceps brachii in movement tasks and force tasks. Exp. Brain Res. 79(1), 138–142 (1990)

    Article  Google Scholar 

  131. M. Theeuwen, C.C. Gielen, L.E. Miller, The relative activation of muscles during isometric contractions and low-velocity movements against a load. Exp. Brain Res. 101(3), 493–505 (1994)

    Article  Google Scholar 

  132. G.M. Treece, A.H. Gee, P.M. Mayhew, K.E.S. Poole, High resolution cortical bone thickness measurement from clinical CT data. Med. Image Anal. 14(3), 276–290 (2010)

    Article  Google Scholar 

  133. M. Viceconti, C. Zannoni, D. Testi, A. Cappello, A new method for the automatic mesh generation of bone segments from ct data. J. Med. Eng. Technol. 23(2), 77–81 (1999)

    Article  Google Scholar 

  134. M. Viceconti, M. Davinelli, F. Taddei, A. Cappello, Automatic generation of accurate subject-specific bone finite element models to be used in clinical studies. J. Biomech. 37(10), 1597–1605 (2004)

    Article  Google Scholar 

  135. J.H. Waarsing, R.M. Rozendaal, J.N. Verhaar, S.M.A. Bierma-Zeinstra, H. Weinans, A statistical model of shape and density of the proximal femur in relation to radiological and clinical OA of the hip. Osteoarthr. Cartil. 18(6), 787–794 (2010)

    Article  Google Scholar 

  136. D. Waltemath, R. Adams, D.A. Beard, F.T. Bergmann, U.S. Bhalla, R. Britten, V. Chelliah, M.T. Cooling, J. Cooper, E.J. Crampin, A. Garny et al., Minimum information about a simulation experiment (MIASE). PLoS Comput. Biol. 7(4), 1–4 (2011)

    Article  Google Scholar 

  137. J.P. Walter, A.L. Kinney, S.A. Banks, D.D. DLima, T.F. Besier, D.G. Lloyd, B.J. Fregly, Muscle synergies improve optimization prediction of knee contact forces during walking. J. Biomech. Eng. 136(2), 1–9 (2014)

    Article  Google Scholar 

  138. T.D. White, P.A. Folkens (eds.), The Human Bone Manual, 1st edn. (Elsevier, Amsterdam, 2005)

    Google Scholar 

  139. C.R. Winby, D.G. Lloyd, T.B. Kirk, Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters. J. Biomech. 41(8), 1682–1688 (2008)

    Article  Google Scholar 

  140. C.R. Winby, D.G. Lloyd, T.F. Besier, T.B. Kirk, Muscle and external load contribution to knee joint contact loads during normal gait. J. Biomech. 42(14), 2294–2300 (2009)

    Article  Google Scholar 

  141. C.R. Winby, P. Gerus, T.B. Kirk, D.G. Lloyd, Correlation between emg-based co-activation measures and medial and lateral compartment loads of the knee during gait. Clin. Biomech. (Bristol) 28(9–10), 1014–1019 (2013)

    Article  Google Scholar 

  142. J.J. Woods, B. Bigland-Ritchie, Linear and non-linear surface emg/force relationships in human muscles. An anatomical/functional argument for the existence of both. Am. J. Phys. Med. 62(6), 287–299 (1983)

    Google Scholar 

  143. T.A. Wren, D.P. Lindsey, G.S. Beaupre, D.R. Carter, Effects of creep and cyclic loading on the mechanical properties and failure of human achilles tendons. Ann. Biomed. Eng. 31(6), 710–717 (2003)

    Article  Google Scholar 

  144. P. Wriggers, L. Krstulovic-Opara, J. Korelc, Smooth C-1-interpolations for two-dimensional frictional contact problems. Int. J. Num. Methods Eng. 51(12), 1469–1495 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  145. T. Yu, C.M. Lloyd, D.P. Nickerson, M.T. Cooling, A.K. Miller, A. Garny, J.R. Terkildsen, J. Lawson, R.D. Britten, P.J. Hunter, P.M.F. Nielsen, The physiome model repository 2. Bioinformatics 27(5), 743–744 (2011)

    Article  Google Scholar 

  146. F.E. Zajac, Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)

    Google Scholar 

  147. R. Zdero, H. Bougherara, A. Dubov, S. Shah, P. Zalzal, A. Mahfud, E.H. Schemitsch, The effect of cortex thickness on intact femur biomechanics: a comparison of finite element analysis with synthetic femurs. Proc. Inst. Mech. Eng. [H] 224, 831–840 (2010)

    Article  Google Scholar 

  148. J. Zhang, D. Malcolm, J. Hislop-Jambrich, C.D.L. Thomas, P. Nielsen, Automatic meshing of femur cortical surfaces from clinical CT images. Mesh Process. Med. Image Anal. 2012, 40–48 (2012)

    Google Scholar 

  149. J. Zhang, D. Malcolm, J. Hislop-Jambrich, C.D.L. Thomas, P.M.F. Nielsen, An anatomical region-based statistical shape model of the human femur. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2, 176–185 (2014)

    Google Scholar 

Download references

Acknowledgements

Many people have been involved in the Physiome Project developments described here, but we would like in particular to acknowledge the contributions from Chris Bradley, Richard Christie, Alan Garny, Poul Nielsen and Tommy Yu. The authors would like to thank all members, past and present, of the Auckland Bioengineering Institute (ABI) musculoskeletal group who have contributed to the presented works, especially Dr Kumar Mithraratne and Dr Katja Oberhofer for their work with host mesh fitting. The author would like to thank the Victorian Institute of Forensic Medicine, and J. Hislop–Jambrich, C. David L. Thomas, and J. Clement at the University of Melbourne for providing the femur CT images that made this work possible. The author is grateful for the guidance and assistance of P.M.F. Nielsen, D. Malcolm, H. Sorby, and T. Besier at the Auckland Bioengineering Institute; G.M. Treece and A.H. Gee at the University of Cambridge; and funding from the University of Auckland, the US Food and Drug Administration, and the NZ Ministry of Business, Innovation, and Employment. The authors would like to thank several colleagues who have developed various aspects of the EMG-informed modelling work over the years - Tom Buchanan and Kurt Manal from the University of Delaware; Dario Farina from Georg August University Gottingen, Monica Reggiani at the University of Padua; Claudio Pizzolato from Griffith University, and B.J. Fregly and Jonathan Walter from the University of Florida. We would also like to thank the following colleagues for their contribution to the PET/CT work Andrew Quon, Scott Delp, Garry Gold, Christine Draper and Michael Fredericson at Stanford University; and Gary Beaupr at the VA Palo Alto; Funding for part of this work has been provided by the Royal Society of New Zealand Marsden Fund, National Institutes of Health R01 EB009351-01A2 grant in the USA, and National Health and Medical Research Council grants in Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin Fernandez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Fernandez, J. et al. (2018). Musculoskeletal Modelling and the Physiome Project. In: Pivonka, P. (eds) Multiscale Mechanobiology of Bone Remodeling and Adaptation. CISM International Centre for Mechanical Sciences, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-58845-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58845-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58843-8

  • Online ISBN: 978-3-319-58845-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics