Skip to main content

Application of Disease System Analysis to Osteoporosis: From Temporal to Spatio-Temporal Assessment of Disease Progression and Intervention

  • Chapter
  • First Online:
Multiscale Mechanobiology of Bone Remodeling and Adaptation

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 578))

Abstract

Osteoporosis (OP) is a progressive bone disorder regarded as an important worldwide health issue. OP is characterised by a slow reduction of the bone matrix and changes in the bone matrix properties. Novel drug treatments are continuously developed to reduce the risk of bone fractures. Assessing the effects of novel and existing treatments on OP can be challenging. This is due to the difficulties of establishing the effects of the drug on the disease progression as reflected in the slowly changing bone mineral density (BMD). In recent years, our understanding of the pathophysiology of OP has considerably improved. Biomarkers reflecting bone physiology have been identified at the cellular, tissue and organ levels. Cellular biomarkers reflect the dynamics of bone remodelling (i.e., bone formation and resorption) on a short time scale. On the other hand, tissue and organ scale biomarkers show changes of BMD and bone structural arrangements on a larger time scale. Biomarkers can be used to characterise bone remodelling and to quantify the effect of the drug on OP. Recently, the concept of disease system analysis (DSA) has been proposed as a novel approach to quantitatively characterise drug effects on disease progression. This approach integrates physiology, disease progression and drug treatment in a comprehensive mechanism-based modelling framework using a large amount of complementary biomarker data. This chapter will provide an overview of the use of DSA to characterise drug effects on OP. We will review classical (i.e., non-mechanistic) pharmacokinetic-pharmacodynamic (PK/PD) models used to study drug dose-effect responses. Latest mechanistic bone remodelling models will be presented together with the study of the effect of the drug denosumab on disease progression in postmenopausal osteoporosis (PMO). Finally, we will provide an outlook on how to extend the temporal mechanistic model towards a spatio-temporal description. We conclude that the development of fully mechanistic disease system models of OP has great potential to adequately predict the long-term effects of drug treatments on clinical outcomes. This may provide a means for patient-specific estimation of bone fracture risk.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following the notation of L. Lanyon we will use (re)modelling to denote both modelling and remodelling.

  2. 2.

    It is important to distinguish between blood, plasma, and serum. Blood includes fluid, white and red cells and platelets; plasma is the fluid portion of blood including only soluble proteins; serum is the plasma without the soluble protein.

References

  1. E. Abe, M. Yamamoto, Y. Taguchi, B. Lecka-Czernik, C.A. O’Brien, A.N. Economides, N. Stahl, R.L. Jilka, S.C. Manolagas, Essential requirement of BMPs-2/4 for both osteoblast and osteoclast formation in murine bone marrow cultures from adult mice: Antagonism by noggin. J. Bone Mineral Res. 15(4), 663–673 (2000)

    Google Scholar 

  2. M.E. Arlot, E. Sornay-Rendu, P. Garnero, B. Vey-Marty, P.D. Delmas, Apparent pre- and postmenopausal bone loss evaluated by DXA at different skeletal sites in women: the OFELY cohort. J. Bone Mineral Res. 12(4), 683–690 (1997)

    Article  Google Scholar 

  3. Y. Bala, D. Farlay, P.D. Delmas, P.J. Meunier, G. Boivin, Time sequence of secondary mineralization and microhardness in cortical and cancellous bone from ewes. Bone 46(4), 1204–1212 (2010). ISSN 8756-3282

    Google Scholar 

  4. Y. Bala, D. Farlay, G. Boivin, Bone mineralization: from tissue to crystal in normal and pathological contexts. Osteoporosis Int. 24(8), 2153–2166 (2013). ISSN 1433-2965

    Google Scholar 

  5. Y. Bala, R. Zebaze, E. Seeman, Role of cortical bone in bone fragility. Current Opinion Rheumatol. 27(4), 406–413 (2015)

    Article  Google Scholar 

  6. R. Baron, E. Hesse, Update on bone anabolics in osteoporosis treatment: rationale, current status, and perspectives. J. Clin. Endocrinol. Metaboli. 97(2), 311–325 (2012). ISSN 0021972X

    Google Scholar 

  7. R. Baron, M. Kneissel, WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat. Med. 19(2), 179–92 (2013). ISSN 1546-170X

    Google Scholar 

  8. C.A. Baud, M. Gossi, Degree of mineralization of bone tissue as determined by quantitative microradiograhy: effect of age, sex and pathological conditions, in Proceedings Fourth International Conference on Bone Measurement (1980)

    Google Scholar 

  9. D.C. Bauer, A. Schwartz, L. Palermo, J. Cauley, M. Hochberg, A. Santora, S.R. Cummings, D.M. Black, Fracture prediction after discontinuation of 4 to 5 years of alendronate therapy. JAMA Int. Med. 174(7), 1126–34 (2014). ISSN 2168-6106

    Google Scholar 

  10. P.J. Bekker, D.L. Holloway, A.S. Rasmussen, R. Murphy, S.W. Martin, P.T. Leese, G.B. Holmes, C.R. Dunstan, A.M. DePaoli, A single-dose placebo-controlled study of AMG 162, a fully human monoclonal antibody to RANKL, in postmenopausal women. J. Bone Mineral Res. 19(7), 1059–1066 (2004). ISSN 0884-0431

    Google Scholar 

  11. C. Bergot, Y. Wu, E. Jolivet, L.Q. Zhou, J.D. Laredo, V. Bousson, The degree and distribution of cortical bone mineralization in the human femoral shaft change with age and sex in a microradiographic study. Bone 45(3), 435–442 (2009)

    Article  Google Scholar 

  12. J.P. Bilezikian, Combination anabolic and antiresorptive therapy for osteoporosis: opening the anabolic window. Current Osteoporosis Rep. 6(1), 24–30 (2008). ISSN 1544-2241

    Google Scholar 

  13. D.M. Black, C.J. Rosen, Postmenopausal osteoporosis. N. Engl. J. Med. 374(3), 254–262 (2016)

    Article  Google Scholar 

  14. J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476), 307–310 (1986). ISSN 01406736

    Google Scholar 

  15. R.D. Blank, D.G. Malone, R.C. Christian, N.L. Vallarta-Ast, D.C. Krueger, M.K. Drezner, N.C. Binkley, K.E. Hansen, Patient variables impact lumbar spine dual energy X-ray absorptiometry precision. Osteoporosis Int. 17(5), 768–774 (2006). ISSN 1433-2965

    Google Scholar 

  16. G. Boivin, P. Meunier, Effects of bisphosphonates on matrix mineralization. J. Musculoskelet. Neuronal Interact. 2(6), 538–543 (2002)

    Google Scholar 

  17. G. Boivin, P.J. Meunier, The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif. Tissue Int. 70(6), 503–511 (2002)

    Google Scholar 

  18. G. Boivin, D. Farlay, Y. Bala, A. Doublier, P.J. Meunier, P.D. Delmas, Influence of remodeling on the mineralization of bone tissue. Osteoporosis Int. 20(6), 1023–1026 (2009). ISSN 1433-2965

    Google Scholar 

  19. G.Y. Boivin, P.M. Chavassieux, A.C. Santora, J. Yates, P.J. Meunier, Alendronate increases bone strength by increasing the mean degree of mineralization of bone tissue in osteoporotic women. Bone 27(5), 687–694 (2000)

    Article  Google Scholar 

  20. J. Borggrefe, C. Graeff, T.N. Nickelsen, F. Marin, C.C. Gler, Quantitative computed tomographic assessment of the effects of 24 months of teriparatide treatment on 3D femoral neck bone distribution, geometry, and bone strength: results from the EUROFORS study. J. Bone Mineral Res. 25(3), 472–481 (2010). ISSN 1523-4681

    Google Scholar 

  21. M.L. Bouxsein, Mechanisms of osteoporosis therapy: a bone strength perspective. Clin. Cornerstone 5, S13–S21 (2003). ISSN 1098-3597

    Google Scholar 

  22. W.J. Boyle, W.S. Simonet, D.L. Lacey, Osteoclast differentiation and activation. Clin. Calcium 17(4), 484–492 (2003). ISSN 0028-0836

    Google Scholar 

  23. J. Burch, St. Rice, H. Yang, A. Neilson, L. Stirk, R. Francis, P. Holloway, S. Peter, D. Craig, Systematic review of the use of bone turnover markers for monitoring the response to osteoporosis treatment: the secondary prevention of fractures, and primary prevention of fractures in high-risk groups. Report ISSN1366-5278, National Institute for Health Research (2014)

    Google Scholar 

  24. A.J. Burghardt, G.J. Kazakia, S. Ramachandran, T.M. Link, S. Majumdar, Age and gender related differences in the geometric properties and biomechanical significance of intra-cortical porosity in the distal radius and tibia. J. Bone Mineral Res. 25(5), 983–993 (2010). ISSN 0884-0431

    Google Scholar 

  25. D.B. Burr, Bone quality: understanding what matters. J. Musculoskelet. Neuronal Interact. 4(2), 184–186 (2004). ISSN 11087161

    Google Scholar 

  26. L.M. Calvi, G.B. Adams, K.W. Weibrecht, J.M. Weber, D.P. Olson, M.C. Knight, R.P. Martin, E. Schipani, P. Divieti, F.R. Bringhurst, L.A. Milner, H.M. Kronenberg, D.T. Scadden, Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960), 841–846 (2003)

    Article  Google Scholar 

  27. D.R. Carter, W.C. Hayes, Bone compressive strength: the influence of density and strain rate. Science 194(4270), 1174–1176 (1976)

    Article  Google Scholar 

  28. T.J. Chambers, Osteoblasts relase osteoclasts from calcitonin-induced quiescence. J. Cell Sci. 57, 247–260 (1982)

    Google Scholar 

  29. P.L.S. Chan, N.H.G. Holford, Drug treatment effects on disease progression. Annu. Rev. Pharmacol. Toxicol. 41(1), 625–659 (2001)

    Article  Google Scholar 

  30. L. Cianferotti, F. DAsta, M.L. Brandi, A review on strontium ranelate long-term antifracture efficacy in the treatment of postmenopausal osteoporosis. Therapeutic Adv. Musculoskelet. Disease 5(3), 127–139 (2013). ISSN 1759-720X

    Google Scholar 

  31. T.L. Clemens, G. Karsenty, The osteoblast: an insulin target cell controlling glucose homeostasis. J. Bone Mineral Res. 26(4), 677–680 (2011)

    Article  Google Scholar 

  32. P. Close, A. Neuprez, J.-Y. Reginster, Developments in the pharmacotherapeutic management of osteoporosis. Expert Opinion Pharmacother. 7(12), 1603–1615 (2006). ISSN 1465-6566

    Google Scholar 

  33. D.M.L. Cooper, B. Erickson, A.G. Peele, K. Hannah, C.D.L. Thomas, J.G. Clement, Visualization of 3D osteon morphology by synchrotron radiation micro-CT. J. Anatomy 219(4), 481–489 (2011). ISSN 0021-8782

    Google Scholar 

  34. F. Cosman, Anabolic and antiresorptive therapy for osteoporosis: combination and sequential approaches. Current Osteoporosis Rep. 12(4), 385–395 (2014). ISSN 1544-2241

    Google Scholar 

  35. F. Cosman, R.A. Wermers, C. Recknor, K.F. Mauck, L. Xie, E.V. Glass, J.H. Krege, Effects of teriparatide in postmenopausal women with osteoporosis on prior alendronate or raloxifene: differences between stopping and continuing the antiresorptive agent. J. Clin. Endocrinol. Metab. 94(10), 3772–3780 (2009). ISSN 0021-972X

    Google Scholar 

  36. S. Cremers, P. Garnero, Biochemical markers of bone turnover in the clinical development metastatic bone disease potential uses and pitfalls. Drugs 66(16), 2031–2058 (2006)

    Article  Google Scholar 

  37. S.R. Cummings, D. Bates, D.M. Black, Clinical use of bone densitometry: scientific review. JAMA 288(15), 1889–1897 (2002)

    Article  Google Scholar 

  38. J.D. Currey, The mechanical properties of bone. Clin. Orthop. Relat. Res. 73, 210–231 (2006)

    Google Scholar 

  39. J.D. Currey, K. Brear, P. Zioupos, The effects of ageing and changes in mineral content in degrading the toughness of human femora. J. Biomech. 29(2), 257–260 (1996)

    Article  Google Scholar 

  40. M. Danhof, G. Alvan, S.G. Dahl, J. Kuhlmann, G. Paintaud, Mechanism-based pharmacokinetic-pharmacodynamic modeling \(-\) a new classification of biomarkers. Pharm. Res. 22(9), 1432–1437 (2005). ISSN 0724-8741

    Google Scholar 

  41. M. Danhof, J. de Jongh, E.C.M. De Lange, O. Della Pasqua, B.A. Ploeger, R.A. Voskuyl, Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu. Rev. Pharmacol. Toxicol. 47, 357–400 (2007). ISSN 0362-1642

    Google Scholar 

  42. D.W. Dempster, M.W. Ferguson-Pell, R.W. Mellish, G.V. Cochran, F. Xie, C. Fey, W. Horbert, M. Parisien, R. Lindsay, Relationships between bone structure in the iliac crest and bone structure and strength in the lumbar spine. Osteoporos. Int. 3(2), 90–96 (1993)

    Article  Google Scholar 

  43. A. El Maghraoui, L. Achemlal, A. Bezza, Monitoring of dual-energy X-ray absorptiometry measurement in clinical practice. J. Clin. Densitom. 9(3), 281–286 (2006). ISSN 1094-6950

    Google Scholar 

  44. E.F. Eriksen, Cellular mechanisms of bone remodeling. Rev. Endocr. Metab. Disord. 11(4), 219–227 (2010). ISSN 13899155

    Google Scholar 

  45. S. Ferrari, Future directions for new medical entities in osteoporosis. Best Pract. Res. Clin. Endocrinol. Metab. 28(6), 859–870 (2014). ISSN 15321908

    Google Scholar 

  46. J.S. Finkelstein, J.J. Wyland, H. Lee, R.M. Neer, Effects of teriparatide, alendronate, or both in women with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab. 95(4), 1838–1845 (2010). ISSN 0021-972X

    Google Scholar 

  47. H. Follet, G. Boivin, C. Rumelhart, P.J. Meunier, The degree of mineralization is a determinant of bone strength: a study on human calcanei. Bone 34(5), 783–789 (2004)

    Article  Google Scholar 

  48. H. Follet, S. Viguet-Carrin, B. Burt-Pichat, B. Depalle, Y. Bala, E. Gineyts, F. Munoz, M.E. Arlot, G. Boivin, R. Chapurlat, P.D. Delmas, M.L. Bouxsein, Effects of pre-existing microdamage, collagen cross-links, degree of mineralization, age and architecture on compressive mechanical properties of elderly human vertebral trabecular bone. J. Orthop. Res. 29(4), 481–488 (2011)

    Article  Google Scholar 

  49. N. Fratzl-Zelman, P. Roschger, B.M. Misof, S. Pfeffer, F.H. Glorieux, K. Klaushofer, F. Rauch, Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone 44(6), 1043–1048 (2009)

    Google Scholar 

  50. H.M. Frost, in Bone Remodelling Dynamics, ed. by C.R. Lam (Charles C. Thomas, Springfield, 1963)

    Google Scholar 

  51. H.M. Frost, Dynamics of bone remodeling, in Bone Biodymanics, ed. by H.M. Frost (Little, Brown & Co, 1964), pp. 315–333

    Google Scholar 

  52. H.M. Frost, The skeletal intermediary organization. Metab. Bone Disease Relat. Res. 4(5), 281–290 (1983). ISSN 02218747

    Google Scholar 

  53. H.M. Frost, Bone mass and the mechanostat: a proposal. Anat Record 219(1), 1–9 (1987)

    Article  Google Scholar 

  54. P. Garnero, E. Sornay-Rendu, M.C. Chapuy, P.D. Delmas, Increased bone turnover in late postmenopausal women is a major determinant of osteoporosis. J. Bone Mineral Res. 11(3), 337–349 (1996). ISSN 0884-0431

    Google Scholar 

  55. P. Geusens, New insights into treatment of osteoporosis in postmenopausal women. RMD Open 1(Suppl 1), e000051 (2015). ISSN 2056-5933

    Google Scholar 

  56. P. Geusens, R. Chapurlat, G. Schett, A. Ghasem-Zadeh, E. Seeman, J. de Jong, J. van den Bergh, High-resolution in vivo imaging of bone and joints: a window to microarchitecture. Nat. Rev. Rheumatol. 10(5), 304–313 (2014). ISSN 1759-4790

    Google Scholar 

  57. A. Grey, M. Bolland, B. Mihov, S. Wong, A. Horne, G. Gamble, I.R. Reid, Duration of antiresorptive effects of low-dose zoledronate in osteopenic postmenopausal women: a randomized, placebo-controlled trial. J. Bone Mineral Res. 29(1), 166–172 (2014). ISSN 1523-4681

    Google Scholar 

  58. D.J. Hadjidakis, I.I. Androulakis, Bone remodeling. Ann. N. Y. Acad. Sci. 1092, 385–396 (2006). ISSN 00778923

    Google Scholar 

  59. K.D. Harrison, D.M.L. Cooper, Modalities for visualization of cortical bone remodeling: the past, present, and future. Front. Endocrinol. 6, 122 (2015). ISSN 1664-2392

    Google Scholar 

  60. Ch. Hellmich, F.-J. Ulm, L. Dormieux, Can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independent phase properties and their interactions? Biomech. Model. Mechanobiol. 2(4), 219–238 (2004). ISSN 1617-7940

    Google Scholar 

  61. K. Henriksen, D.J. Leeming, C. Christiansen, M.A. Karsdal, Use of bone turnover markers in clinical osteoporosis assessment in women: current issues and future options. Women’s Health 7(6), 689–698 (2011). ISSN 1745-5057

    Google Scholar 

  62. C.J. Hernandez, How can bone turnover modify bone strength independent of bone mass? Bone 42(6), 1014–1020 (2008). ISSN 87563282

    Google Scholar 

  63. C.J. Hernandez, T.M. Keaveny, A biomechanical perspective on bone quality. Bone 39(6), 1173–1181 (2006). ISSN 8756-3282

    Google Scholar 

  64. L.C. Hofbauer, M. Schoppet, Clinical implications of the osteoprotegerin/RANKL/RANK system for bone. J. Am. Med. Assoc. 292(4), 490–495 (2004)

    Article  Google Scholar 

  65. N.H.G. Holford, Clinical pharmacology \(=\) disease progression \(+\) drug action. Br. J. Clin. Pharmacol. 79(1), 18–27 (2013). ISSN 1365-2125

    Google Scholar 

  66. N.H.G. Holford, L.B. Sheiner, Kinetics of pharmacologic response. Pharmacol. Ther. 16(2), 143–166 (1982). ISSN 01637258

    Google Scholar 

  67. N.J. Horwood, J. Elliott, T.J. Martin, M.T. Gillespie, Osteotropic agents regulate the expression of osteoclast differentiation factor and osteoprotegerin in osteoblastic stromal cells. Endocrinology 139(11), 4743 (1998)

    Article  Google Scholar 

  68. S.L. Hui, C.W. Slemenda, C.C. Johnston, Age and bone mass as predictors of fracture in a prospective study. J. Clin. Investig. 81(6), 1804–1809 (1988). ISSN 0021-9738

    Google Scholar 

  69. Z.F.G. Jaworski, C. Hooper, Study of cell kinetics within evolving secondary haversian systems. J. Anat. 131(1), 91–102 (1980)

    Google Scholar 

  70. Z.F.G. Jaworski, B. Duck, G. Sekaly, Kinetics of osteoclasts and their nuclei in evolving secondary haversian systems. J. Anat. 133, 397405 (1981)

    Google Scholar 

  71. W.S.S. Jee, W. Yao, Overview: animal models of osteopenia and osteoporosis. J. Musculoskelet. Neuron Interact. 1(3), 193–207 (2001)

    Google Scholar 

  72. W.S.S. Jee, X.Y. Tian, R.B. Setterberg, Cancellous bone minimodeling-based formation: a Frost Takahashi legacy. J. Musculoskelet. Neuronal Interact. 7(3), 232–239 (2007)

    Google Scholar 

  73. B. Jobke, B. Muche, A.J. Burghardt, J. Semler, T.M. Link, S. Majumdar, Teriparatide in bisphosphonate-resistant osteoporosis: Microarchitectural changes and clinical results after 6 and 18 months. Calcif. Tissue Int. 89(2), 130–139 (2011). ISSN 1432-0827

    Google Scholar 

  74. J.A. Kanis, Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359(9321), 1929–1936 (2002). ISSN 0140-6736

    Google Scholar 

  75. J.A. Kanis, N. Burlet, C. Cooper, P.D. Delmas, J.Y. Reginster, F. Borgstrom, R. Rizzoli, European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 19(4), 399–428 (2008). ISSN 0937941X

    Google Scholar 

  76. J.A. Kanis, E.V. McCloskey, H. Johansson, C. Cooper, R. Rizzoli, J.Y. Reginster, European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 24(1), 23–57 (2013). ISSN 1433-2965

    Google Scholar 

  77. Y. Kawano, R. Kypta, Secreted antagonists of the Wnt signalling pathway. J. Cell Sci. 116(13), 2627–2634 (2003)

    Article  Google Scholar 

  78. A.E. Kearns, S. Khosla, P.J. Kostenuik, Receptor activator of nuclear factor \(\kappa \)b ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr. Rev. 29(2), 155–192 (2008). ISSN 0163-769X

    Google Scholar 

  79. J. Keener, J. Sneyd, Mathematical Physiology, 2nd edn. (Springer, Berlin, 2009). ISBN 9780387758466

    Google Scholar 

  80. L.J. Kidd, A.S. Stephens, J.S. Kuliwaba, N.L. Fazzalari, A.C.K. Wu, M.R. Forwood, Temporal pattern of gene expression and histology of stress fracture healing. Bone 46(2), 369–378 (2010)

    Article  Google Scholar 

  81. R. Kulkarni, A. Bakker, V. Everts, J. Klein-Nulend, Inhibition of osteoclastogenesis by mechanically loaded osteocytes: Involvement of MEPE. Calcif. Tissue Int. 87(5), 461–468 (2010)

    Article  Google Scholar 

  82. D.L. Lacey, E. Timms, H.L. Tan, M.J. Kelley, C.R. Dunstan, T. Burgess, R. Elliott, A. Colombero, G. Elliott, S. Scully, H. Hsu, J. Sullivan, N. Hawkins, E. Davy, C. Capparelli, A. Eli, Y.X. Qian, S.. Kaufman, I. Sarosi, V. Shalhoub, G. Senaldi, J. Guo, J. Delaney, W.J. Boyle, Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93, 165–176 (1998). ISSN 00928674

    Google Scholar 

  83. J. Lam, S. Takeshita, J.E. Barker, O. Kanagawa, F.P. Ross, S.L. Teitelbaum, TNF-\(\alpha \) induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand. J. Clin. Invest. 106(12), 1481–1488 (2000)

    Article  Google Scholar 

  84. L.E. Lanyon, Osteocytes, strain detection, bone modeling and remodeling. Calcif. Tissue Int. 53, S102–S107 (1993)

    Article  Google Scholar 

  85. L.E. Lanyon, S. Bourn, The influence of mechanical function on the development and remodeling of the tibia. an experimental study in sheep. J. Bone Joint Surg. Am. 61(2), 263–273 (1979)

    Article  Google Scholar 

  86. D.A. Lauffenburger, J. Linderman, Receptors: Models for Binding, Trafficking, and Signaling (Oxford University Press, New York, 1993)

    Google Scholar 

  87. D.J. Leeming, P. Alexandersen, M.A. Karsdal, P. Qvist, S. Schaller, L.B. TankĂ³, An update on biomarkers of bone turnover and their utility in biomedical research and clinical practice. Eur. J. Clin. Pharmacol. 62(10), 781–792 (2006). ISSN 00316970

    Google Scholar 

  88. V. Lemaire, F.L. Tobin, L.D. Greller, C.R. Cho, L.J. Suva, Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J. Theor. Biol. 229(3), 293–309 (2004)

    Article  MathSciNet  Google Scholar 

  89. C. Lerebours, P.R. Buenzli, S. Scheiner, P. Pivonka, A multiscale mechanobiological model of bone remodelling predicts site-specific bone loss in the femur during osteoporosis and mechanical disuse. Biomech. Model. Mechanobiol. 15(1), 43–67 (2015)

    Article  Google Scholar 

  90. E.M. Lewiecki, Treatment of osteoporosis with denosumab. Maturitas 66, 182–186 (2010). ISSN 03785122

    Google Scholar 

  91. T. Lin, C. Wang, X.Z. Cai, X. Zhao, M.M. Shi, Z.M. Ying, F.Z. Yuan, C. Guo, S.G. Yan, Comparison of clinical efficacy and safety between denosumab and alendronate in postmenopausal women with osteoporosis: a meta-analysis. Int. J. Clin. Pract. 66(4), 399–408 (2012). ISSN 1742-1241

    Google Scholar 

  92. R. Lindsay, W.H. Scheele, R. Neer, et al, Sustained vertebral fracture risk reduction after withdrawal of teriparatide in postmenopausal women with osteoporosis. Arch. Intern. Med. 164(18), 2024–2030 (2004). ISSN 0003-9926

    Google Scholar 

  93. X.S. Liu, L. Ardeshirpour, J.N. VanHouten, E. Shane, J.J. Wysolmerski, Site-specific changes in bone microarchitecture, mineralization, and stiffness during lactation and after weaning in mice. J. Bone Mineral Res. 27(4), 865–875 (2012). ISSN 15234681

    Google Scholar 

  94. Y. Lu, H.K. Genant, J. Shepherd, S. Zhao, A. Mathur, T.P. Fuerst, S.R. Cummings, Classification of osteoporosis based on bone mineral densities. J. Bone Mineral Res. 16(5), 901–910 (2001). ISSN 1523-4681

    Google Scholar 

  95. Z.F. Lu, G. Wang, C.R. Dunstan, H. Zreiqat, Short-term exposure to tumor necrosis factor-\(\alpha \) enables human osteoblasts to direct adipose tissue-derived mesenchymal stem cells into osteogenic differentiation. Stem Cells Dev. 21(13), 2420–2429 (2012)

    Article  Google Scholar 

  96. S.C. Manolagas, Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr. Rev. 21(2), 115–137 (2000)

    Google Scholar 

  97. A. Marathe, M.C. Peterson, D.E. Mager, Integrated cellular bone homeostasis model for denosumab pharmacodynamics in multiple myeloma patients. J. Pharmacol. Exp. Ther. 326(2), 555–562 (2008). ISSN 1521-0103

    Google Scholar 

  98. T.J. Martin, E. Seeman, New mechanisms and targets in the treatment of bone fragility. Clin. Sci. 112(2), 77–91 (2007). ISSN 1470-8736

    Google Scholar 

  99. M.R. McClung, A. Grauer, S. Boonen, M.A. Bolognese, J.P. Brown, A. Diez-Perez, B.L. Langdahl, J.-Y. Reginster, J.R. Zanchetta, S.M. Wasserman, L. Katz, J. Maddox, Y.-C. Yang, C. Libanati, H.G. Bone, Romosozumab in postmenopausal women with low bone mineral density. N. Engl. J. Med. 370(5), 412–420 (2014). ISSN 0028-4793

    Google Scholar 

  100. B. Meibohm, H. Derendorf, Basic concepts of pharmacokinetic/pharmacodynamic (PK/PD) modelling. Int. J. Clin. Pharmacol. Ther. 35(10), 401–13 (1997)

    Google Scholar 

  101. H. Michael, P.L. Hrknen, H.K. Vnnen, T.A. Hentunen, Estrogen and testosterone use different cellular pathways to inhibit osteoclastogenesis and bone resorption. J. Bone Mineral Res. 20(12), 2224–2232 (2005)

    Article  Google Scholar 

  102. P.D. Miller, M.A. Bolognese, E.M. Lewiecki, M.R. McClung, B. Ding, M. Austin, Y. Liu, J. San Martin, Effect of denosumab on bone density and turnover in postmenopausal women with low bone mass after long-term continued, discontinued, and restarting of therapy: a randomized blinded phase 2 clinical trial. Bone 43(2), 222–229 (2008). ISSN 8756-3282

    Google Scholar 

  103. R. MĂ¼ller, Hierarchical microimaging of bone structure and function. Nat. Rev. Rheumatol. 5(7), 373–381 (2009). ISSN 1759-4790

    Google Scholar 

  104. G.R. Mundy, Cellular and molecular regulation of bone turnover. Bone 24(5 Suppl), 35S–38S (1999). ISSN 8756-3282

    Google Scholar 

  105. M.H. Murad, M.T. Drake, R.J. Mullan, K.F. Mauck, L.M. Stuart, M.A. Lane, N.O. Abu Elnour, P.J. Erwin, A. Hazem, M.A. Puhan, T. Li, V.M. Montori, Comparative effectiveness of drug treatments to prevent fragility fractures: a systematic review and network meta-analysis. J. Clin. Endocrinol. Metab. 97(6), 1871–1880 (2012). ISSN 19457197

    Google Scholar 

  106. J.D. Murray, Mathematical Biology: I. An Introduction, vol. 1, 3rd edn. (Springer, New York, 2002)

    Google Scholar 

  107. N. Nakagawa, M. Kinosaki, K. Yamaguchi, N. Shima, H. Yasuda, K. Yano, T. Morinaga, K. Higashio, RANK is the essential signaling receptor for osteoclast differentiation factor in osteoclastogenesis. Biochem. Biophys. Res. Commun. 253(2), 395–400 (1998)

    Article  Google Scholar 

  108. T. Nakashima, M. Hayashi, T. Fukunaga, K. Kurata, M. Oh-hora, J.Q. Feng, L.F. Bonewald, T. Kodama, A. Wutz, E.F. Wagner, J.M. Penninger, H. Takayanagi, Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat. Med. 17(10), 1231–1234 (2011). ISSN 1078-8956

    Google Scholar 

  109. A. Nazarian, B.D. Snyder, D. Zurakowski, R. MĂ¼ller, Quantitative micro-computed tomography: A non-invasive method to assess equivalent bone mineral density. Bone 43(2), 302–311 (2008). ISSN 87563282

    Google Scholar 

  110. R.M. Neer, C.D. Arnaud, J.R. Zanchetta, R. Prince, G.A. Gaich, J.Y. Reginster, A.B. Hodsman, E.F. Eriksen, S. Ish-Shalom, H.K. Genant, O. Wang, B.H. Mitlak, Effect of parathyroid hormone (1–34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N. Engl. J. Med. 344(19), 1434–1441 (2001). ISSN 0028-4793

    Google Scholar 

  111. M. Nilsson, C. Ohlsson, A. Odn, D. Mellström, M. Lorentzon, Increased physical activity is associated with enhanced development of peak bone mass in men: a five-year longitudinal study. J. Bone Mineral Res. 27(5), 1206–1214 (2012). ISSN 1523-4681

    Google Scholar 

  112. S. Nuzzo, M.H. Lafage-Proust, R. Martin-Badosa, G. Boivin, T. Thomas, C. Alexandre, F. Peyrin, Synchrotron radiation microtomography allows the analysis of three-dimensional microarchitecture and degree of mineralization of human iliac crest biopsy specimens: effects of etidronate treatment. J. Bone Mineral Res. 17(8), 1372–1382 (2002)

    Article  Google Scholar 

  113. J.S. Nyman, A. Roy, X. Shen, R.L. Acuna, J.H. Tyler, X. Wang, The influence of water removal on the strength and toughness of cortical bone. J. Biomech. 39(5), 931–938 (2006). ISSN 0021-9290

    Google Scholar 

  114. E. Ozcivici, Y.K. Luu, B. Adler, Y.-X. Qin, J. Rubin, S. Judex, C.T. Rubin, Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6(1), 50–59 (2010). ISSN 1759-4790

    Google Scholar 

  115. D. Padhi, M. Allison, A.J. Kivitz, M.J. Gutierrez, B. Stouch, C. Wang, G. Jang, Multiple doses of sclerostin antibody romosozumab in healthy men and postmenopausal women with low bone mass: a randomized, double-blind, placebo-controlled study. J. Clin. Pharmacol. 54(2), 168–178 (2014). ISSN 1552-4604

    Google Scholar 

  116. A.M. Parfitt, The physiological and clinical significance of bone histomorphometric data, Bone Histomorphometry: Techniques and Interpretation (CRC Press, Boca Raton, 1983)

    Google Scholar 

  117. A.M. Parfitt, Calcium Homeostasis, vol. 107 (Springer, Heidelberg, 1993), pp. 1–65

    Google Scholar 

  118. A.M. Parfitt, Osteonal and hemi-osteonal remodeling: the spatial and temporal framework for signal traffic in adult human bone. J. Cell. Biochem. 55(3), 273–86 (1994). ISSN 0730-2312

    Google Scholar 

  119. M.C. Peterson, M.M. Riggs, A physiologically based mathematical model of integrated calcium homeostasis and bone remodeling. Bone 46(1), 49–63 (2010). ISSN 1873-2763

    Google Scholar 

  120. P. Pivonka, S.V. Komarova, Mathematical modeling in bone biology: from intracellular signaling to tissue mechanics. Bone 47(2), 181–189 (2010). ISSN 1873-2763

    Google Scholar 

  121. P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R. Dunstan, N.A. Sims, T.J. Martin, G.R. Mundy, Model structure and control of bone remodeling: a theoretical study. Bone 43(2), 249–263 (2008)

    Article  Google Scholar 

  122. P. Pivonka, J. Zimak, D.W. Smith, B.S. Gardiner, C.R. Dunstan, N.A. Sims, T.J. Martin, G.R. Mundy, Theoretical investigation of the role of the RANK-RANKL-OPG system in bone remodeling. J. Theor. Biol. 262(2), 306–316 (2010)

    Article  Google Scholar 

  123. P. Pivonka, P.R. Buenzli, C.R. Dunstan, A systems approach to understanding bone cell interactions in health and disease, in Cell Interact, ed. by S. Gowder (chapter 7) (InTech, 2012), pp. 169–204

    Google Scholar 

  124. T.M. Post, J.I. Freijer, J. DeJongh, M. Danhof, Disease system analysis: basic disease progression models in degenerative disease. Pharm. Res. 22(7), 1038–1049 (2005). ISSN 07248741

    Google Scholar 

  125. T.M. Post, S.C.L.M. Cremers, T. Kerbusch, M. Danhof, Bone physiology, disease and treatment. Clin. Pharmacokinet. 49(2), 89–118 (2010). ISSN 0312-5963

    Google Scholar 

  126. T.M. Post, S. Schmidt, L.A. Peletier, R. de Greef, T. Kerbusch, M. Danhof, Application of a mechanism-based disease systems model for osteoporosis to clinical data. J. Pharmacokinet. Pharmacodyn. 40(2), 143–56 (2013). ISSN 1573-8744

    Google Scholar 

  127. S. Qiu, D.S. Rao, S. Palnitkar, A.M. Parfitt, Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J. Bone Mineral Res. 18(9), 1657–1663 (2003)

    Article  Google Scholar 

  128. R.R. Recker, J. Lappe, K.M. Davies, R. Heaney, Remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J. Bone Mineral Res. 19(10), 1628–1633 (2004)

    Article  Google Scholar 

  129. J.-Y. Rho, L. Kuhn-Spearing, P. Zioupos, Mechanical properties and the hierarchical structure of bone. Med. Eng. Phys. 20(2), 92–102 (1998). ISSN 1350-4533

    Google Scholar 

  130. B.L. Riggs, Overview of osteoporosis. West. J. Med. 154(1), 63–77 (1991)

    Google Scholar 

  131. B.L. Riggs, A.M. Parfitt, Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J. Bone Mineral Res. 20(2), 177–184 (2005). ISSN 0884-0431

    Google Scholar 

  132. B.L. Riggs, H.W. Wahner, L.J. Melton, L.S. Richelson, H.L. Judd, K.P. Offord, J. Clin. Invest. 77(5), 1487–1491 (1986). ISSN 00219738

    Google Scholar 

  133. B.L. Riggs, S. Khosla, L.J. Melton, A unitary model for involutional osteoporosis: estrogen deficiency causes both type I and type II osteoporosis in postmenopausal women and contributes to bone loss in aging men. J. Bone Mineral Res. 13(5), 763–773 (1998). ISSN 0884-0431

    Google Scholar 

  134. R.O. Ritchie, The conflicts between strength and toughness. Nat. Mater. 10(11), 817–22 (2011). ISSN 14761122

    Google Scholar 

  135. A.G. Robling, S.D. Stout, Morphology of the drifting osteon. Cells Tissues Organs 164, 192–204 (1998)

    Article  Google Scholar 

  136. G. Rodan, T.J. Martin, Role of osteoblasts in hormonal control of bone resorption a hypothesis. Calcif. Tissue Int. 33(1), 349–351 (1981)

    Article  Google Scholar 

  137. P. Roschger, S. Rinnerthaler, J. Yates, G.A. Rodan, P. Fratzl, K. Klaushofer, Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone 29(2), 185–191 (2001)

    Article  Google Scholar 

  138. P. Roschger, H.S. Gupta, A. Berzlanovich, G. Ittner, D.W. Dempster, P. Fratzl, F. Cosman, M. Parisien, R. Lindsay, J.W. Nieves, K. Klaushofer, Constant mineralization density distribution in cancellous human bone. Bone 32(3), 316–323 (2003)

    Article  Google Scholar 

  139. P. Roschger, E.P. Paschalis, P. Fratzl, K. Klaushofer, Bone mineralization density distribution in health and disease. Bone 42(3), 456–466 (2008)

    Article  Google Scholar 

  140. D. Ruffoni, P. Fratzl, P. Roschger, K. Klaushofer, R. Weinkamer, The bone mineralization density distribution as a fingerprint of the mineralization process. Bone 40(5), 1308–1319 (2007)

    Article  Google Scholar 

  141. D. Ruffoni, P. Fratzl, P. Roschger, R. Phipps, K. Klaushofer, R. Weinkamer, Effect of temporal changes in bone turnover on the bone mineralization density distribution: a computer simulation study. J. Bone Mineral Res. 23(12), 1905–1914 (2008)

    Article  Google Scholar 

  142. M. Sadatsafavi, A. Moayyeri, L. Wang, and W. D. Leslie. Heteroscedastic regression analysis of factors affecting bmd monitoring. Journal of Bone and Mineral Research, 23 (11): 1842–1849, 2008. ISSN 1523-4681

    Google Scholar 

  143. P. Sambrook, C. Cooper, Osteoporosis. Lancet 367, 2010–2018 (2006)

    Google Scholar 

  144. V. Sansalone, V. Bousson, S. Naili, C. Bergot, F. Peyrin, J.D. Laredo, G. Haiat, Anatomical distribution of the degree of mineralization of bone tissue in human femoral neck: impact on biomechanical properties. Bone 50(4), 876–884 (2012)

    Article  MATH  Google Scholar 

  145. S. Scheiner, P. Pivonka, C. Hellmich, Coupling systems biology with multiscale mechanics, for computer simulations of bone remodeling. Comput. Methods Appl. Mech. Eng. 254(1), 181–196 (2013). ISSN 00457825

    Google Scholar 

  146. S. Scheiner, P. Pivonka, D.W. Smith, C.R. Dunstan, C. Hellmich, Mathematical modeling of postmenopausal osteoporosis and its treatment by the anti-catabolic drug denosumab. Int. J. Numer. Method Biomed. Eng. 30(1), 1–27 (2014). ISSN 2040-7947

    Google Scholar 

  147. S. Schmidt, T.M. Post, L.A. Peletier, M.A. Boroujerdi, M. Danhof, Coping with time scales in disease systems analysis: application to bone remodeling. J. Pharmacokinet. Pharmacodyn. 38(6), 873–900 (2011). ISSN 1567567X

    Google Scholar 

  148. A.V. Schwartz, D.C. Bauer, S.R. Cummings, J.A. Cauley, K.E. Ensrud, L. Palermo, R.B. Wallace, M.C. Hochberg, A.C. Feldstein, A. Lombardi, D.M. Black, Efficacy of continued alendronate for fractures in women with and without prevalent vertebral fracture: the FLEX trial. J. Bone Mineral Res. 25(5), 976–982 (2010). ISSN 08840431

    Google Scholar 

  149. E. Seeman, Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy? Bone 41(3), 308–317 (2007). ISSN 8756-3282

    Google Scholar 

  150. E. Seeman, P.D. Delmas, Bone quality \(-\) the material and structural basis of bone strength and fragility. N. Engl. J. Med. 354(21), 2250–2261 (2006). ISSN 1533-4406

    Google Scholar 

  151. M.J. Seibel, Biochemical markers of bone turnover \(-\) Part I: biochemistry and variability. Clin. Biochem. Rev. 26(4), 97–122 (2005). ISSN 0159-8090

    Google Scholar 

  152. M.J. Seibel, Biochemical markers of bone turnover Part II: clinical applications in the management of osteoporosis. Clin. Biochem. Rev. 27(3), 123–138 (2006). ISSN 0159-8090

    Google Scholar 

  153. E. Shane, D. Burr, P.R. Ebeling, B. Abrahamsen, R.A. Adler, T.D. Brown, A.M. Cheung, F. Cosman, J.R. Curtis, R. Dell, D. Dempster, T.A. Einhorn, H.K. Genant, P. Geusens, K. Klaushofer, K. Koval, J.M. Lane, F. McKiernan, R. McKinney, A. Ng, J. Nieves, R. O’Keefe, S. Papapoulos, H.T. Sen, M.C.H. van der Meulen, R.S. Weinstein, M. Whyte. Atypical subtrochanteric and diaphyseal femoral fractures: Report of a task force of the american society for bone and mineral research. J. Bone Mineral Res. 25(11), 2267–2294 (2010). ISSN 1523-4681

    Google Scholar 

  154. L. Shargel, S. Wu-Pong, A.B.C. Yu, Applied Biopharmaceutics & Pharmacokinetics, 5th edn. (MCGraw-Hill, New York, 2004) (Medical)

    Google Scholar 

  155. J.A. Shepherd, Y. Lu, K. Wilson, T. Fuerst, H. Genant, T.N. Hangartner, C. Wilson, D. Hans, E.S. Leib. Cross-calibration and minimum precision standards for Dual-Energy X-ray absorptiometry: the 2005 ISCD official positions. J. Clin. Densitom. 9(1), 31–36 (2006). ISSN 1094-6950

    Google Scholar 

  156. H. Sievänen, P. Kannus, T.L.N. Järvinen, Bone quality: an empty term. PLoS Med. 4(3), e27 (2007)

    Article  Google Scholar 

  157. W.S. Simonet, D.L. Lacey, C.R. Dunstan, M. Kelley, M.S. Chang, R. LĂ¼thy, H.Q. Nguyen, S. Wooden, L. Bennett, T. Boone, G. Shimamoto, M. DeRose, R. Elliott, A. Colombero, H.L. Tan, G. Trail, J. Sullivan, E. Davy, N. Bucay, L. Renshaw-Gegg, T.M. Hughes, D. Hill, W. Pattison, P. Campbell, S. Sander, G. Van, J. Tarpley, P. Derby, R. Lee, W.J. Boyle, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89(2), 309–319 (1997)

    Article  Google Scholar 

  158. R.E. Small, Uses and limitations of bone mineral density measurements in the management of osteoporosis. Medscape General Med. 7(2), 3–29 (2005). ISSN 1531-0132

    Google Scholar 

  159. T.H. Smit, E.H. Burger, Is BMU-coupling a strain-regulated phenomenon? A finite element analysis. J. Bone Mineral Res. 15(2), 301–307 (2000)

    Article  Google Scholar 

  160. T.H. Smit, E.H. Burger, J.M. Huyghe, A case for strain-induced fluid flow as a regulator of bmu-coupling and osteonal alignment. J. Bone Mineral Res. 17(11), 2021–2029 (2002)

    Article  Google Scholar 

  161. L.J. Smith, J.P. Schirer, N.L. Fazzalari, Bone mineralization density distribution in health and disease. J. Biomech. 43(16), 3144–3149 (2010)

    Article  Google Scholar 

  162. K.L. Stone, D.G. Seeley, L.-Y. Lui, J.A. Cauley, K. Ensrud, W.S. Browner, M.C. Nevitt, S.R. Cummings, BMD at multiple sites and risk of fracture of multiple types: long-term results from the study of osteoporotic fractures. J. Bone Mineral Res. 18(11), 1947–1954 (2003). ISSN 1523-4681

    Google Scholar 

  163. P. Sutton-Smith, H. Beard, N. Fazzalari, Quantitative backscattered electron imaging of bone in proximal femur fragility fracture and medical illness. J. Microsc. 229(Pt 1), 60–66 (2007)

    MathSciNet  Google Scholar 

  164. P. Szulc, E. Seeman, Thinking inside and outside the envelopes of bone. Osteoporos. Int. 20(8), 1281–1288 (2009). ISSN 1433-2965

    Google Scholar 

  165. S.L. Teitelbaum, F.P. Ross, Genetic regulation of osteoclast development and function. Nat. Rev. Genet. 4(8), 638–649 (2003). ISSN 1471-0056

    Google Scholar 

  166. A.Y.-T. Teng, H. Nguyen, X. Gao, Y.-Y. Kong, R.M. Gorczynski, B. Singh, R.P. Ellen, J.M. Penninger, Functional human T-cell immunity and osteoprotegerin ligand control alveolar bone destruction in periodontal infection. J. Clin. Invest. 106(6), R59–R67 (2000)

    Article  Google Scholar 

  167. C.D.L. Thomas, S.A. Feik, J.G. Clement, Increase in pore area, and not pore density, is the main determinant in the development of porosity in human cortical bone. J. Anat. 209, 219–230 (2006)

    Article  Google Scholar 

  168. E. Tsuda, M. Goto, S. Mochizuki, K. Yano, F. Kobayashi, T. Morinaga, K. Higashio, Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem. Biophys. Res. Commun. 234(1), 137–142 (1997)

    Article  Google Scholar 

  169. S.S.J. Webster, Integrated bone tissue physiology: anatomy and physiology, Bone Mechanics Handbook, 2nd edn. (CRC Press, Boca Raton, 2001)

    Google Scholar 

  170. S. Weiner, H.D. Wagner, The material bone: structure-mechanical function relations. Annu. Rev. Mater. Sci. 28(8), 271–298 (1998)

    Article  Google Scholar 

  171. R.S. Weinstein, True strength. J. Bone Mineral Res. 15(4), 621–625 (2000). ISSN 1523-4681

    Google Scholar 

  172. M.N. Weitzmann, R. Pacifici, Estrogen deficiency and bone loss: an inflammatory tale. J. Clin. Investig. 116(5), 1186–1194 (2006)

    Article  Google Scholar 

  173. WHO: Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. World Health Organ. Techn. Rep. Ser. 843 (1994)

    Google Scholar 

  174. WHO: Prevention and management of osteoporosis. World Health Organ. Techn. Rep. Ser. 921, 1–164 (2003). ISSN 0512-3054

    Google Scholar 

  175. J.C. Wong, M.R. Griffiths, Precision of bone densitometry measurements: when is change true change and does it vary across bone density values? Australas. Radiol. 47(3), 236–239 (2003)

    Article  Google Scholar 

  176. H. Yasuda, N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S. Mochizuki, A. Tomoyasu, K. Yano, M. Goto, A. Murakami, E. Tsuda, T. Morinaga, K. Higashio, N. Udagawa, N. Takahashi, T. Suda, Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc. Natl. Acad. Sci. USA 95(7), 3597–602 (1998). ISSN 0027-8424

    Google Scholar 

  177. E.A. Zimmermann, B. Busse, R.O. Ritchie, The fracture mechanics of human bone: influence of disease and treatment. BoneKEy Rep. 4(September), 743 (2015). ISSN 2047-6396

    Google Scholar 

  178. P.K. Zysset, E. Dall’Ara, P. Varga, D.H. Pahr, Finite element analysis for prediction of bone strength. BoneKEy Rep. 2(386), e1–e9 (2013). ISSN 2047-6396

    Google Scholar 

Download references

Acknowledgements

Dr Pivonka acknowledges support of this work by the Australian Research Council (ARC). Miss Trichilo acknowledges support by The University of Melbourne as part of the International PhD scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Pivonka .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 CISM International Centre for Mechanical Sciences

About this chapter

Cite this chapter

Trichilo, S., Pivonka, P. (2018). Application of Disease System Analysis to Osteoporosis: From Temporal to Spatio-Temporal Assessment of Disease Progression and Intervention. In: Pivonka, P. (eds) Multiscale Mechanobiology of Bone Remodeling and Adaptation. CISM International Centre for Mechanical Sciences, vol 578. Springer, Cham. https://doi.org/10.1007/978-3-319-58845-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58845-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58843-8

  • Online ISBN: 978-3-319-58845-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics