Skip to main content

Understanding the Dynamics of Phosphorus Starvation and Plant Growth

  • Chapter
  • First Online:
  • 2622 Accesses

Abstract

Phosphorus is one of the essential macronutrients required in relatively large quantities by the plants for normal growth and development and to complete their life cycle. It is an important constituent of biomolecules like nucleic acids, phospholipids, enzymes and adenosine triphosphate. Phosphate signaling allows higher plants to respond and adapt to the phosphate-deficient conditions efficiently. Phosphorus deficiency in the soil produces responses and adaptive changes in the plants like changes in root morphology and architecture, improved uptake and utilization of P, metabolic changes, exudation of organic acids, and numerous enzymes for the solubilization of the inorganic and organic reserves of P in the rhizosphere (phosphate mobilization). Therefore, the understanding of the proper mechanisms of the adaptation of plants to low P availability will help in the selection and breeding to improve productivity under P-limited environments. The present review gives an overview of the plant responses to P-limited environments and the developments made so far in this area of study.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Amtmann, A., Hammond, J. P., Armengaud, P., & White, P. J. (2005). Nutrient sensing and signalling in plants: Potassium and phosphorus. Advances in Botanical Research, 43, 209–257.

    Article  Google Scholar 

  • Bariola, P. A., Howard, C. J., Taylor, C. B., Verburg, M. T., Jaglan, V. D., & Green, P. J. (1994). The Arabidopsis ribonuclease gene RNS1 is tightly controlled in response to phosphate limitation. The Plant Journal, 6(5), 673–685.

    Article  CAS  PubMed  Google Scholar 

  • Bates, T. R., & Lynch, J. P. (1996). Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant, Cell & Environment, 19, 529–538.

    Article  CAS  Google Scholar 

  • Bates, T. R., & Lynch, J. P. (2001a). Root hairs confer a competitive advantage under low phosphorus availability. Plant and Soil, 236, 243–250.

    Article  CAS  Google Scholar 

  • Bates, T. R., & Lynch, J. P. (2001b). The efficiency of Arabidopsis thaliana (Brassicaceae) root hairs in phosphorus acquisition. American Journal of Botany, 87, 964–970.

    Article  Google Scholar 

  • Begum, H. H., et al. (2005). The function of a maize-derived phosphoenolpyruvate carboxylase (PEPC) in phosphorus-deficient transgenic rice. Soil Science & Plant Nutrition, 51, 497–506.

    Article  CAS  Google Scholar 

  • Benning, C., Beatty, J. T., Prince, R. C., & Somerville, C. R. (1993). The sulfolipid sulfoquinovosyldiacylglycerol is not required for photosynthetic electron transport in Rhodobacter sphaeroides but enhances growth under phosphate limitation. Proceedings of the National Academy of Sciences of the United States of America, 90, 1561–1565.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borch, K., Bouma, T. J., Lynch, J. P., & Brown, K. M. (1999). Ethylene: A regulator of root architectural responses to soil phosphorus availability. Plant, Cell & Environment, 22, 425–431.

    Article  CAS  Google Scholar 

  • Casson, S. A., & Lindsey, K. (2003). Genes and signalling in root development. The New Phytologist, 158, 11–38.

    Article  CAS  Google Scholar 

  • Essigmann, B., Guler, S., Narang, R. A., Linke, D., & Benning, C. (1998). Phosphate availability affects the thylakoid lipid composition and the expression of SQD1, a gene required for sulfolipid biosynthesis in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 95, 1950–1955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang, Z., Shao, C., Meng, Y., Wu, P., & Chen, M. (2009). Phosphate signaling in Arabidopsis and Oryza sativa. Plant Science, 176, 170–180.

    Article  CAS  Google Scholar 

  • Gilbert, G. A., et al. (2000). Proteoid root development of phosphorus deficient lupin is mimicked by auxin and phosphonate. Annals of Botany, 85, 921–928.

    Article  CAS  Google Scholar 

  • Guimil, S., & Dunand, C. (2006). Patterning of Arabidopsis epidermal cells: Epigenetic factors regulate the complex epidermal cell fate pathway. Trends in Plant Science, 11, 601–609.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, J. P., & White, P. J. (2008). Sucrose transport in the phloem: Integrating root responses to phosphorus starvation. Journal of Experimental Botany, 59, 93–109.

    Article  CAS  PubMed  Google Scholar 

  • Haran, S., Logendra, S., Seskar, M., Bratanova, M., & Raskin, I. (2000). Characterization of arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiology, 124, 615–626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrison, M. J., Dewbre, G. R., & Liu, J. (2002). A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell, 14, 2413–2429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartel, H., Dormann, P., & Benning, C. (2000). DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 97, 10649–10654.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermans, C., Hammond, J. P., White, P. J., & Verbruggen, N. (2006). How do plants respond to nutrient shortage by biomass allocation? Trends in Plant Science, 11, 610.

    Article  CAS  PubMed  Google Scholar 

  • Hinsinger, P., Gobran, G. R., Gregory, P. J., & Wenzel, W. W. (2005). Rhizosphere geometry and heterogeneity arising from root-mediated physical and chemical processes. The New Phytologist, 168, 293–303.

    Article  CAS  PubMed  Google Scholar 

  • Jones, D. L., & Oburger, E. (2011). Solubilization of phosphorus by soil microorganism. In E. K. Buenemann, A. Oberson, & E. Frossard (Eds.), Phosphorus in Action (pp. 169–198). New York: Springer.

    Chapter  Google Scholar 

  • Kuo, H. F., & Chiou, T. J. (2011). The role of microRNAs in phosphorus deficiency signaling. Plant Physiology, 156, 1016–1024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, D., et al. (2002). Purple acid phosphatases of Arabidopsis thaliana. Comparative analysis and differential regulation by phosphate deprivation. The Journal of Biological Chemistry, 277, 27772–27781.

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Bucio, J., Cruz-Ramırez, A., & Herrera-Estrella, L. (2003). The role of nutrient availability in regulating root architecture. Current Opinion in Plant Biology, 6, 280–287.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, J. P. (1995). Root architecture and plant productivity. Plant Physiology, 109, 7–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, Z., Bielenberg, D. G., Brown, K. M., & Lynch, J. P. (2001). Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant, Cell & Environment, 24(4), 459–467.

    Google Scholar 

  • Marschner, H. (2012). Mineral nutrition of higher plants (3rd ed.). Great Britain: Elsevier Science Ltd.

    Google Scholar 

  • Michael, G. (2001). The control of root hair formation: Suggested mechanisms. Journal of Plant Nutrition and Soil Science, 164, 111–119.

    Article  CAS  Google Scholar 

  • Miller, S. S., Liu, J., Allan, D. L., Menzhuber, C. J., Fedorova, M., & Vance, C. P. (2001). Molecular control of acid phosphatise secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiology, 127, 594–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mimura, T., Reid, R., & Smith, F. (1998). Control of phosphate transport across the plasma membrane of Chara corallina. Journal of Experimental Botany, 49, 13–19.

    Article  CAS  Google Scholar 

  • Misson, J., Raghothama, K. G., Jain, A., Jouhet, J., Block, M. A., Bligny, R., & Doumas, P. (2005). A genome-wide transcriptional analysis using Arabidopsis thaliana Affymetrix gene chips determined plant responses to phosphate deprivation. Proceedings of the National Academy of Sciences of the United States of America, 102, 11934–11939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morcuende, R., Bari, R., Gibon, Y., Zheng, W., Pant, B. D., Blasing, O., & Scheible, W. R. (2007). Genome-wide reprogramming of metabolism and regulatory networks of Arabidopsis in response to phosphorus. Plant, Cell & Environment, 30, 85–112.

    Article  CAS  Google Scholar 

  • Mouillon, J. M., & Persson, B. L. (2006). New aspects on phosphate sensing and signalling in Saccharomyces cerevisiae. FEMS Yeast Research, 6(2), 171–176.

    Article  CAS  PubMed  Google Scholar 

  • Nacry, P., Canivenc, G., Muller, B., Azmi, A., Van Onckelen, H., Rossignol, M., & Doumas, P. (2005). A role for auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis. Plant Physiology, 138, 2061–2074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Narang, R. A., Bruene, A., & Altmann, T. (2000). Analysis of phosphate acquisition efficiency in different Arabidopsis accessions. Plant Physiology, 124, 1786–1799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Persson, B. L., Lagerstedt, J. O., Pratt, J. R., Pattison-Granberg, J., Lundh, K., Shokrollahzadeh, S., & Lundh, F. (2003). Regulation of phosphate acquisition in Saccharomyces cerevisiae. Current Genetics, 43, 225–244.

    Article  CAS  PubMed  Google Scholar 

  • Plaxton, W. C. (1996). The organization and regulation of plant glycolysis. Annual Review of Plant Physiology and Plant Molecular Biology, 47, 185–214.

    Article  CAS  PubMed  Google Scholar 

  • Richardson, A. E., Barea, J. M., McNeill, A. M., & Prigent-Combaret, C. (2009). Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganism. Plant and Soil, 321, 305–339.

    Article  CAS  Google Scholar 

  • Rubio, V., Linhares, F., Solano, R., Martín, A. C., Iglesias, J., Leyva, A., & Paz-Ares, J. (2001). A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes & Development, 15(16), 2122–2133.

    Article  CAS  Google Scholar 

  • Ryan, P. R., Delhaize, E., & Jones, D. L. (2001). Function and mechanism of organic anion exudation from plant roots. Annual Review of Plant Biology, 52(1), 527–560.

    Article  CAS  Google Scholar 

  • Shane, M., De Vos, M., De Roock, S., & Lambers, H. (2003). Shoot P status regulates cluster-root growth and citrate exudation in Lupinus albus grown with a divided root system. Plant, Cell & Environment, 26, 265–273.

    Article  CAS  Google Scholar 

  • Shen, J., Li, H., Neumann, G., & Zhang, F. (2005). Nutrient uptake, cluster root formation and exudation of protons and citrate in Lupinus albus as affected by localized supply of phosphorus in a split-root system. Plant Science, 168, 837–845.

    Article  CAS  Google Scholar 

  • Smith, F. W., Mudge, S. R., Rae, A. L., & Glassop, D. (2003). Phosphate transport in plants. Plant and Soil, 248, 71–83.

    Article  CAS  Google Scholar 

  • Steyn, W. J., Wand, S. J. E., Holcroft, D. M., & Jacobs, G. (2002). Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytologist, 155, 349–361.

    Article  CAS  Google Scholar 

  • Taylor, C. B., & Green, P. J. (1991). Genes with homology to fungal and S-gene RNases are expressed in Arabidopsis thaliana. Plant Physiology, 96, 980–984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ticconi, C. A., Delatorre, C. A., & Abel, S. (2001). Attenuation of phosphate starvation responses by phosphite in Arabidopsis. Plant Physiology, 127(3), 963–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Theodorou, W. C., & Plaxton, M. E. (1993). Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiology, 101, 339–334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torriani. (1990). From cell membrane to nucleotides: The phosphate regulation in Escherichia coli. BioEssays, 12, 371–376.

    Article  CAS  PubMed  Google Scholar 

  • Vance, C. P. (2010). Quantitative trait loci, epigenetics, sugars, and microRNAs: Quaternaries in phosphate acquisition and use. Plant Physiology, 154, 582–588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance, C. P., Uhde-Stone, C., & Allan, D. L. (2003). Phosphorus acquisition and use: Critical adaptations by plants for securing a non-renewable resource. The New Phytologist, 157, 423–447.

    Article  CAS  Google Scholar 

  • Varadarajan, D. K., et al. (2002). Phosphite, an analog of phosphate, suppresses the coordinated expression of genes under phosphate starvation. Plant Physiology, 129, 1232–1240.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B. L., Tang, X. Y., Cheng, L. Y., Zhang, A. Z., Zhang, W. H., Zhang, F. S., Liu, J. Q., Cao, Y., Allan, D. L., Vance, C. P., et al. (2010). Nitric oxide is involved in phosphorus deficiency-induced cluster-root development and citrate exudation in white lupin. The New Phytologist, 187, 1112–1123.

    Article  CAS  PubMed  Google Scholar 

  • Wanner, B. L. (1993). Gene regulation by phosphate in enteric bacteria. Journal of Cellular Biochemistry, 51, 47–54.

    Article  CAS  PubMed  Google Scholar 

  • Wu, P., Ma, L., Hou, X., Wang, M., Wu, Y., Liu, F., & Deng, X. W. (2003). Phosphate starvation triggers distinct alterations of genome expression in Arabidopsis roots and leaves. Plant Physiology, 132, 1260–1271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, F., Shen, J., Zhang, J., Zuo, Y., Li, L., & Chen, X. (2010). Rhizosphere processes and management for improving nutrient use efficiency and crop productivity: Implications for China. Advances in Agronomy, 107, 1–32.

    Article  CAS  Google Scholar 

  • Zhu, J., Zhang, C., & Lynch, J. P. (2010). The utility of phenotypic plasticity of root hair length for phosphorus acquisition. Functional Plant Biology, 37, 313–322.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tariq Ahmad Dar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Dar, T.A., Uddin, M., Ali, A., Khan, M.M.A., ul Hassan Dar, T. (2017). Understanding the Dynamics of Phosphorus Starvation and Plant Growth. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_7

Download citation

Publish with us

Policies and ethics