Skip to main content

Nutrient Management for Improving Crop, Soil, and Environmental Quality

  • Chapter
  • First Online:
Essential Plant Nutrients
  • 2622 Accesses

Abstract

Agricultural intensification and mechanization has resulted overall deterioration in soil-based ecosystem making it poor reserve of nutrients and organic matter and contributes to loss of biodiversity, thereby damaging sustainability of agricultural production, soil resilience capacity, and environmental quality. All these necessitate adopting strategies to improve resource use efficiency to meet burgeoning demand for food from shrinking land areas. Efficient nutrient management strategies pave the way to combat the challenges by tackling the over and under use of nutrients, checking different kinds of losses from the system, and improving use efficiency of the crops. Application of targeted, sufficient, and balanced quantities of inorganic fertilizers will be necessary to make nutrients available for high yields without polluting the environment. At the same time, every effort should be made to improve the availability and use of secondary nutrients and micronutrients, organic fertilizers, and soil conservation practices to augment crop yield and quality in an efficient and environmentally benign manner, without sacrificing soil health and/or productivity of future generations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altieri, M. A., & Nicholls, C. I. (2003). Soil fertility management and insect pests: Harmonizing soil and plant health in agroecosystems. Soil and Tillage Research, 72, 203–211.

    Article  Google Scholar 

  • Aulakh, M. S. (2010). Integrated nutrient management for sustainable crop production, improving crop quality and soil health, and minimizing environmental pollution. In 19th World Congress of Soil Science, Soil Solutions for a Changing World, 1–6 August 2010, Brisbane, Australia.

    Google Scholar 

  • Batabyal, K., Mandal, B., & Hazra, G. C. (2016a). Nutrient management, energy input-output and economic analyses of eggplant production under subtropical conditions. International Journal of Vegetable Science, 22, 409–419. doi:10.1080/19315260.2016.1141825.

    Article  Google Scholar 

  • Batabyal, K., Mandal, B., Sarkar, D., Murmu, S., Tamang, A., Das, I., Hazra, G. C., & Chattopadhyay, P. S. (2016b). Comprehensive assessment of nutrient management technologies for cauliflower production under subtropical conditions. European Journal of Agronomy, 79, 1–13.

    Article  CAS  Google Scholar 

  • Bhattacharyya, T., Pal, D. K., Chandran, P., Mandal, C., Ray, S. K., Gupta, R. K., & Gajbhiye, K. S. (2004). Managing soil carbon stocks in the Indo-Gangetic Plains, India (p. 44). New Delhi, India: Rice-Wheat Consortium for the Indo-Gangetic Plains.

    Google Scholar 

  • Bindraban, P. S., van der Velde, M., Ye, L., van den Berg, M., Materechera, S., Kiba, D. I., Tamene, L., Ragnarsdottir, K. V., Jongschaap, R., Hoogmoed, M., Hoogmoed, W., van Beek, C., & van Lynden, G. (2012). Assessing the impact of soil degradation on food production. Current Opinion in Environmental Sustainability, 4, 478–488.

    Article  Google Scholar 

  • Bouwman, A. F., Boumans, L. J., & Batjes, N. H. (2002). Emissions of N2O and NO from fertilized fields: Summary of available measurement data. Global Biogeochemical Cycles, 16, 1–4.

    Article  Google Scholar 

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences of the United States of America, 96, 5952–5959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien, S. H., Prochnow, L. I., & Cantarella, H. (2009). Recent developments of fertilizer production and use to improve nutrient use efficiency and minimize environmental impacts. Advances in Agronomy, 102, 267–322.

    Article  CAS  Google Scholar 

  • Conway, G. (1997). The doubly-green revolution: Food for all in the 21st century (p. 335). London: Penguin.

    Google Scholar 

  • DeRosa, M. C., Monreal, C., Schnitzer, M., Walsh, R., & Sultan, Y. (2010). Nano-technology in fertilizers. Nature Nanotechnology, 5, 91.

    Article  CAS  PubMed  Google Scholar 

  • Dobermann, A., Witt, C., & Dawe, D. (Eds.). (2004). Increasing the productivity of intensive rice systems through site-specific nutrient management. Enfield, NH: Science Publishers, Inc./International Rice Research Institute (IRRI).

    Google Scholar 

  • Eichner, M. J. (1990). Nitrous oxide emissions from fertilized soils: Summary of available data. Journal of Environmental Quality, 19, 272–280.

    Article  Google Scholar 

  • Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z., & Winiwarter, W. (2008). How a century of ammonia synthesis changed the world. Nature Geoscience, 10, 636–639.

    Article  Google Scholar 

  • Fixen, P. E., Jin, J., Tiwari, K. N., & Stauffer, M. D. (2005). Capitalizing on multi-element interactions through balanced nutrition—A pathway to improve nitrogen use efficiency in China, India and North America. Science in China. Series C, Life Sciences, 48, 1–11.

    Google Scholar 

  • Goel, M. C., Singh, K. J. B., & Bhende, S. N. (2011). Response of application of customized fertilizer grade (CFG) on yield and quality of pomegranate. In M. K. Sheikh et al. (Eds.), Proceedings IInd IS on Pomegranate and Minor, including Mediterranean Fruits (ISPMMF-2009), Acta Horticulturae, 890, ISHS 2011, pp. 333–340.

    Google Scholar 

  • Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781–9792.

    Article  CAS  PubMed  Google Scholar 

  • Graham, R. D., Welch, R. M., & Bouis, H. E. (2001). Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gaps. Advances in Agronomy, 70, 77–142.

    Article  Google Scholar 

  • Huber, D. M. (1980). The role of mineral nutrition in defense. In J. G. Horsfall & E. B. Cowling (Eds.), Plant pathology: An advanced treatise (pp. 381–406). New York: Academic Press.

    Google Scholar 

  • IFA (International Fertilizer Industry Association). (1995). The efficient use of plant nutrients in agriculture. In Fertilizers and agriculture, special edition, Paris, France.

    Google Scholar 

  • IFA (International Fertilizer Industry Association). (2013). Assessment of fertilizer use by crop at the global level 2010–2010/11. Paris: IFA.

    Google Scholar 

  • Indian Fertilizer Scenario. (2013). Economics & Statistics (E&S) Wing, Department of Fertilizers, Ministry of Chemicals & Fertilizers 222 A, Shastri Bhawan, Government of India, New Delhi. 

    Google Scholar 

  • IPNI. (2014). International Plant Nutrition Institute. http://www.nutrientstewardship.com/4r-news/newsletter/ipni-issues-4r-plant-nutrition-manual.

  • Janssen, B. H., Guiking, F. C. T., Van der Eijk, D., Smaling, E. M. A., Wolf, J., & van Reuler, H. (1990). A system for quantitative evaluation of the fertility of tropical soils (QUEFTS). Geoderma, 46, 299–318.

    Article  Google Scholar 

  • Ju, X. T., Kou, C. L., Christie, P., Dou, Z. X., & Zhang, F. S. (2007). Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution, 145, 497–506.

    Article  CAS  PubMed  Google Scholar 

  • Kaleswari, R. K. (2013). Impact of customized fertilizers on yield and soil properties of lowland rice ecosystem. The Madras Agricultural Journal, 100, 150–152.

    Google Scholar 

  • Khurana, H. S., Phillips, S. B., Bijay-Singh, Alley, M. M., Dobermann, A., Sidhu, A. S., Yadvinder-Singh, & Peng, S. (2008). Agronomic and economic evaluation of site-specific nutrient management for irrigated wheat in northwest India. Nutrient Cycling in Agroecosystems, 82, 15–31.

    Article  Google Scholar 

  • Kohler, K., Duynisveld, W. H. M., & Bottcher, J. (2006). Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. Journal of Plant Nutrition and Soil Science, 169, 185–195.

    Article  Google Scholar 

  • Krauss A. (1999). Balanced nutrition and biotic stress. In IFA Agricultural Conference on Managing Plant Nutrition. 29 June–2 July 1999, Barcelona, Spain.

    Google Scholar 

  • Kumwenda, J. D. T., Waddington, S. R., Snapp, S. S., Jones, R. B., & Blackie, M. J. (1996). Soil fertility management research for the maize cropping systems of smallholders in southern Africa: A review (Natural Resources Group Paper 96-02). Mexico City: International Maize and Wheat Improvement Center (CIMMYT).

    Google Scholar 

  • Lal, R. (2006). Carbon management in agricultural soils. Mitigation and Adaptation Strategies for Global Change, 12, 303–322.

    Article  Google Scholar 

  • Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: Phytotoxicity, uptake and accumulation. Science of the Total Environment, 408, 3053–3061.

    Article  CAS  PubMed  Google Scholar 

  • Majumder, B., Mandal, B., & Bandyopadhyay, P. K. (2008). Organic amendments influence soil organic carbon pools and crop productivity in a 19 years old rice-wheat agroecosystem. Soil Science Society of America Journal, 72, 775–785.

    Article  CAS  Google Scholar 

  • Mandal, B. (2005). Assessment and improvement of soil quality and resilience for rainfed production system. Completion Report. New Delhi: National Agricultural Technology Project, Indian Council of Agricultural Research, 30 pp.

    Google Scholar 

  • Mandal, B., Majumder, B., & Bandyopadhyay, P. K. (2007). The potential of cropping systems and soil amendments for carbon sequestration in soils under long-term experiments in subtropical India. Global Change Biology, 13, 357–369.

    Article  Google Scholar 

  • Manna, M. C., Swarup, A., Wanjari, R. H., Singh, Y. V., Ghosh, P. K., Singh, K. N., Tripathi, A. K., & Saha, M. N. (2006). Soil organic matter in a West Bengal inceptisol after 30 years of multiple cropping and fertilization. Soil Science Society of America Journal, 70, 121–129.

    Article  CAS  Google Scholar 

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem processes. Science, 277, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • Mura, S., Seddaiu, G., Bacchini, F., Roggero, P. P., & Greppi, G. F. (2013). Advances of nanotechnology in agro-environmental studies. Italian Journal of Agronomy, 8, 127–140.

    Article  Google Scholar 

  • National Geographic. (2013). http://ngm.nationalgeographic.com/2013/05/fertilized-world/nitrogen-flow-graphic.

  • Prasad, R. (2009). Enhancing nutrient use efficiency—Environmental benign strategies. Souvenir (pp. 67–74). New Delhi: The Indian Society of Soil Science.

    Google Scholar 

  • Rai, V., Acharya, S., & Dey, N. (2012). Implications of nanobiosensors in agriculture. Journal of Biomaterials and Nanobiotechnology, 3, 315–324.

    Article  CAS  Google Scholar 

  • Raliya, R., Nair, R., Chavalmane, S., Wang, W., & Biswas, P. (2015). Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics, 7, 1584–1594.

    Article  CAS  PubMed  Google Scholar 

  • Rothamsted Experimental Station. (1991). Guide to the classical field experiments. Harpenden, UK: AFRC Institute of Arable Crops Research.

    Google Scholar 

  • Shivey, Y. S. (2011). Customized fertilizers: increased crop productivity and nutrient use efficiency. In Proceedings International Conference on Issues for climate change, land use diversification and biotechnological tools for livelihood security, held in Meerut, 8–10 October, 2011. Hi-tech Horticultural Society, Meerut, pp. 128–133.

    Google Scholar 

  • Shukla, A. K., Tiwari, P. K., & Chandra, P. (2014). Micronutrients deficiencies vis-a-vis food and nutritional security of India. Indian Journal of Fertilisers, 10(12), 94–112.

    Google Scholar 

  • Singh, V. K., Govil, V., Singh, S. K., Diwedi, B. S., Meena, M. C., Gupta, V. K., Majumdar, K., & Gangwar, B. (2012). Precision nutrient management strategies using GIS-based mapping in western Uttar Pradesh. Better Crops-South Asia, 6(1), 15–18.

    Google Scholar 

  • Sultan, Y., Walsh, R., Monreal, C. M., & DeRosa, M. C. (2009). Preparation of functional aptamer films using layer-by-layer self-assembly. Biomacromolecules, 10, 1149–1154.

    Article  CAS  PubMed  Google Scholar 

  • Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R., & Polasky, S. (2002). Agricultural sustainability and intensive production practices. Nature, 418, 671–677.

    Article  CAS  PubMed  Google Scholar 

  • Tilman, D., Fargione, J., Wolff, B., D’Antonio, C., Dobson, A., Howarth, R., Schindler, D., Schlesinger, W. H., Simberloff, D., & Swackhamer, D. (2001). Forecasting agriculturally driven global environmental change. Science, 292, 281–284.

    Article  CAS  PubMed  Google Scholar 

  • Voortman, R., & Bindraban, P. S. (2015). Beyond N and P: Toward a land resource ecology perspective and impactful fertilizer interventions in Sub-Saharan Africa. VFRC Report 2015/1 (p. 49). Washington DC: Virtual Fertilizer Research Center.

    Google Scholar 

  • Wang, P., Menzies, N. W., Lombi, E., McKenna, B. A., Johannessen, B., Glover, C. J., Kappen, P., & Kopittke, P. M. (2013). Fate of ZnO nanoparticles in soils and cowpea (Vigna unguiculata). Environmental Science & Technology, 47, 13822–13830.

    Article  CAS  Google Scholar 

  • Welch, R. M., & Graham, R. D. (1999). A new paradigm for world agriculture: Meeting human needs- productive, sustainable, nutritious. Field Crops Research, 60, 1–10.

    Article  Google Scholar 

  • Withers, P. J. A., & Lord, E. I. (2002). Agricultural nutrient inputs to rivers and groundwaters in the UK: Policy, environmental management and research needs. The Science of the Total Environment, 282, 9–24.

    Article  PubMed  Google Scholar 

  • Zheng, L., Hong, F., Eu, S., & Hu, C. (2005). Effect of nano Tio2 on strength of naturally aged seeds and growth of spinach. Biological Trace Element Research, 104, 83–91.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaushik Batabyal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Batabyal, K. (2017). Nutrient Management for Improving Crop, Soil, and Environmental Quality. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_18

Download citation

Publish with us

Policies and ethics