Skip to main content

Regulatory Role of Mineral Nutrients in Nurturing of Medicinal Legumes Under Salt Stress

  • Chapter
  • First Online:

Abstract

Medicinal legumes (Fabaceae family) bear primary and secondary metabolites and other important compounds such as nutraceuticals, pharmaceuticals, and other useful products. The medicinal legumes are potential sources of glycosides (aloe-emodin, chrysophenol, emodin, rhein, etc.), antibiotics, flavonoids, alkaloids and phytochemicals. Hence, it is the need of the hour to escalate the yield and quality of these legumes. In fact, balanced nutrition of crop plants plays a vital role in sustaining the yield and quality of medicinal plants together with maintaining the fertility status of soils on long-term basis. The role of mineral nutrition is of vital importance in the cultivation of these plants. The yield of most crop plants increases linearly with the amount of fertilizers absorbed. With a balanced mineral nutrients supply, the maximum genetic potential of plants can be realized successfully. The productivity as well as the quality of a crop is affected by environmental factors; the uptake and utilization of mineral nutrients from the soil, or from the fertilizers applied to the plants is of prime importance. Among the macro-nutrients, nitrogen (N), phosphorus (P), potassium (K) and calcium (Ca) are major components of metabolic molecules that affect the growth and metabolism of plants significantly. They also play important structural and physiological roles in the overall development of plants. On the other hand, out of many crop production strategies, foliar application of mineral fertilizers in the form of aqueous sprays is also a successful method of administering it. Salinity is a major cause of decrease in agricultural productivity and the increasing level of salt accumulation in soils has become an exigent issue for Indian soils. However, as in the majority of cultivated plants, growth and yield of medicinal plants can be affected by environmental constraints such as salinity and drought. The above technique could be applied to ameliorate the productivity and quality of these medicinal legumes under salinity stress. This review covers the possible role of mineral nutrients application on selected medicinal legumes as well as their ameliorative effects on these legumes under salt stress.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abel, A. J., Sutherland, M. W., Guest, D. I. (2003). Production of reactive oxygen species during nonspecific elicitation, non-host resistance and field resistance expression in cultures of tobacco cells. Functional Plant Biology, 30, 91–99.

    Google Scholar 

  • Abdel-Wahab, A. M., Shabebw, M. S. A., & Younis, M. A. M. (2002). Studies on the effect of salinity, drought stress and soil type on nodule activities of Lablab purpureus (L.) sweet (Kashrangeeg). Journal of Arid Environments, 51, 587–602.

    Article  Google Scholar 

  • Ali, M. A., Abbas, G., Mohy-ud-Din, Q., Ullah, K., Abbas, G., & Aslam, M. (2010). Response of mungbean (Vigna radiata) to phosphatic fertilizer under arid climate. The Journal of Animal Plant Sciences, 20, 83–86.

    Google Scholar 

  • Amirjani, M. R. (2010). Effect of salinity stress on growth, mineral composition, proline content, antioxidant enzymes of soybean. American Journal of Plant Physiology, 5, 350–360.

    Article  CAS  Google Scholar 

  • Arshi, A., Abdin, M. Z., & Iqbal, M. (2002). Growth and metabolism of senna as affected by salt stress. Biologia Plantarum, 45, 295–298.

    Article  Google Scholar 

  • Arshi, A., Abdin, M. Z., & Iqbal, M. (2005). Ameliorative effects of CaCl2 on growth, ionic relations, and proline content of senna under salinity stress. Journal of Plant Nutrition, 28, 101–125.

    Article  CAS  Google Scholar 

  • Arshi, A., Ahmad, A., Aref, I. M., & Iqbal, M. (2010). Calcium interaction with salinity-induced effects on growth and metabolism of soybean (Glycine max L.) cultivars. Journal of Environmental Biology, 31, 795–801.

    CAS  Google Scholar 

  • Ashraf, M. (2004). Some important physiological selection criteria for salt tolerance in plants. Flora, 199, 361–376.

    Google Scholar 

  • Awomi, T. A., Singh, A. K., Kumar, M., & Bordoloi, L. J. (2016). Effect of phosphorus, molybdenum and cobalt nutrition on yield and quality of mungbean (Vigna radiata L.) in acidic soil of northeast India. Indian Journal of Hill Farming, 25, 22–26.

    Google Scholar 

  • Babar, S., Siddiqi, E. H., Hussain, I., Bhatti, K. H., & Rasheed, R. (2014). Mitigating the effects of salinity by foliar application of salicylic acid in fenugreek. Physiology Journal, 869058. 6 pages.

    Google Scholar 

  • Bano, A., & Fatima, M. (2009). Salt tolerance in Zea mays (L.) following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils, 45, 405–413.

    Article  Google Scholar 

  • Barbosa, J. M., Rezende, C. F. A., Leandro, W. M., Ratke, R. F., Flores, R. F., & da Silva, A. R. (2016). Effects of micronutrients application on soybean yield. AJCS, 10, 1092–1097.

    Google Scholar 

  • Bayram, D., Dinler, B. S., & Tasci, E. (2014). Differential response of bean (Phaseolus vulgaris L.) roots and leaves to salinity in soil and hydroponic culture. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 42, 219–226.

    Article  CAS  Google Scholar 

  • Burman, U., Garg, B. K., & Kathju, S. (2007). Interactive effects of phosphorus, nitrogen, and thiourea on clusterbean (Cyamopsis tetragonoloba L.) under rainfed conditions of the Indian arid zone. Journal of Plant Nutrition and Soil Science, 170, 803–810.

    Article  CAS  Google Scholar 

  • Cavalcanti, B. C., Costa-Lotufo, L. V., Moraes, M. O., Burbano, R. R., Silveira, E. R., Cunha, K. M., Rao, V. S., Moura, D. J., Rosa, R. M., Henriques, J. A., & Pessoa, C. (2006). Genotoxicity evaluation of kaurenoic acid, a bioactive diterpenoid present in Copaiba oil. Food and Chemical Toxicology, 44, 388–392.

    Google Scholar 

  • Chakrabarti, N., & Mukherji, S. (2002). Effect of phytohormone pretreatment on metabolic changes in Vigna radiata under salt stress. Journal of Environmental Biology, 23, 295–300.

    CAS  PubMed  Google Scholar 

  • Chhibba, I. M., Nayyar, V. K., & Kanwar, J. S. (2007). Influence of mode and source of applied iron on fenugreek (Trigonella corniculata L.) in a typic ustochrept in Punjab, India. International Journal of Agriculture and Biology, 9, 254–256.

    Google Scholar 

  • Cokkizgin, A. (2012). Salinity stress in common bean (Phaseolus vulgaris L.) seed germination. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40, 177–182.

    CAS  Google Scholar 

  • D’souza, M. R., & Devaraj, V. R. (2010). Biochemical responses of hyacinth bean (Lablab purpureus) to salinity stress. Acta Physiologiae Plantarum, 32, 341–353.

    Article  Google Scholar 

  • D’souza, M. R., & Devaraj, V. R. (2013). Role of calcium in increasing tolerance of hyacinth bean to salinity. Journal of Applied Biology & Biotechnology, 1, 011–020.

    Google Scholar 

  • D’souza, M. R., & Devaraj, V. R. (2015). Pre-treatment with spermidine reverses inhibitory effects of salt stress in hyacinth bean (Lablab purpureus). Journal of Chemical and Pharmaceutical Research, 7, 504–509.

    Google Scholar 

  • Dar, T. A., Uddin, M., Khan, M. M. A., Ali, A., Hashmi, N., & Idrees, M. (2015a). Cumulative effect of gibberellic acid and phosphorus on crop productivity, biochemical activities and trigonelline production in Trigonella foenum-graecum L. Cogent Food & Agriculture, 1, 995950.

    Google Scholar 

  • Dar, T. A., Uddin, M., Khan, M. M. A., Ali, A., Mir, S. R., & Varshney, L. (2015b). Effect of Co-60 gamma irradiated chitosan and phosphorus fertilizer on growth, yield and trigonelline content of Trigonella foenum-graecum L. Journal of Radiation Research and Applied Science, 8, 446–458.

    Google Scholar 

  • Deepika, & Dhingra, H. R. (2014). Effect of salinity stress on morpho-physiological, biochemical and yield characters of cluster bean [Cyamopsis tetragonoloba (L.) Taub.] Indian Journal of Plant Physiology, 19, 393–398.

    Article  Google Scholar 

  • Devi, R. G., Gurusaravanan, V. P., & Gurusaravanan, P. (2012). Alleviating effect of IAA on salt stressed Phaseolus mungo (L.) with reference to growth and biochemical characteristics. Recent Research in Science and Technology, 4, 22–24.

    Google Scholar 

  • Elegeil, G. A. G. B. (2003). Effect of salt-stress on nodulation and growth of Lablab bean (Lablab purpureus) in different soil textures. M. Sc. Thesis, University of Khartoum.

    Google Scholar 

  • Essa, T. A. (2002). Effect of salinity stress on growth and nutrient composition of three soybean (Glycine max L. Merrill) cultivars. Journal of Agronomy and Crop Science, 188, 86–93.

    Article  CAS  Google Scholar 

  • Fathima, K. J., & Sudha, T. (2016). Effect of major and micro nutrients on seed yield, quality and economics of clusterbean (Cyamopsis tetragonoloba L. Taub). Journal of Farm Sciences, 29(2), 273–275.

    Google Scholar 

  • Garg, B. K., Burman, U., & Kathju, S. (2006). Influence of thiourea on photosynthesis, nitrogen metabolism and yield of clusterbean (Cyamopsis tetragonoloba (L.) Taub.) under rainfed conditions of Indian arid zone. Plant Growth Regulation, 48, 237–245.

    CAS  Google Scholar 

  • Goli, M. B., Pande, M., Bellaloui, N., & De Wrachien, D. (2015). Effects of soil applications of micro-nutrients and chelating agent citric acid on mineral nutrients in soybean seeds. Agricultural Sciences, 6, 1404–1411.

    Article  CAS  Google Scholar 

  • Gosset, D. R., Millhollon, E. P., & Lucas, M. C. (1994). Antioxidant response to NaCl stress in salt-tolerant and salt sensitive cultivars of cotton. Crop Science, 34, 706–714.

    Google Scholar 

  • Gour, R., Naruka, I. S., Singh, P. P., Rathore, S. S., & Shaktawat, R. P. S. (2009). Effect of phosphorus and plant growth regulators on growth and yield of Fenugreek (Trigonella foenum-graecum L.) Journal of Spices and Aromatic Crops, 18, 33–36.

    Google Scholar 

  • Hamayun, M., Sohn, E. Y., Khan, S. A., Shinwari, Z. H., Khan, A. L., & Lee, E. J. (2010). Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.) Pakistan Journal of Botany, 42, 1713–1722.

    CAS  Google Scholar 

  • HanumanthaRao, B., Nair, R. M., & Nayyar, N. (2016). Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Frontiers in Plant Science, 7, 957.

    Article  PubMed  PubMed Central  Google Scholar 

  • Horie, T., Karahara, I., & Katsuhara, M. (2012). Salinity tolerance mechanisms in glycophytes: An overview with the central focus on rice plants. Rice, 5, 1–18.

    Article  Google Scholar 

  • Hochmuth, G. J. (2003). Progress in mineral nutrition and nutrient management for vegetable crops in the last 25 years. HortScience, 38, 999–1003.

    Google Scholar 

  • Jafar Dokht, R., Mosavi Nik, S. M., Mehraban, A., & Basiri, M. (2015). Effect of water stress and foliar micronutrient application on physiological characteristics and nutrient uptake in mung bean. Electronic Journal of Crop Production, 8, 121–141.

    Google Scholar 

  • Jamil, A., Riaz, S., Ashraf, M., & Foolad, M. R. (2011). Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences, 30, 435–458.

    Article  Google Scholar 

  • Javid, M. G., Sorooshzadeh, A., Moradi, F., Sanavy Seyed, A. M. M., & Allahdadi, I. (2011). The role of phytohormones in alleviating salt stress in crop plants. Aust J Crop Sci, 5, 726–734.

    Google Scholar 

  • Karmegam, N., & Daniel, T. (2008). Effect of vermicompost and chemical fertilizer on growth and yield of hyacinth bean, Lablab purpureus (L.) sweet. Dynamic Soil, Dynamic Plant, 2, 77–81.

    Google Scholar 

  • Khan, M. M. A., Naeem, M., & Siddiqui, M. H. (2005). Calcium fertilization ameliorates growth, yield and quality of hyacinth bean (Lablab purpureus L.). In Proceedings of 1st International edible legume conference & 4th world cowpea congress, Durban, South Africa, April 17–21.

    Google Scholar 

  • Khan, P. S. S. V., & Basha, P. O. (2016). Salt stress and leguminous crops: Present status and prospects. In M. M. Azooz & P. Ahmad (Eds.), Legumes under environmental stress: Yield, improvement and adaptations. Hoboken, NJ: John Wiley & Sons, Inc.

    Google Scholar 

  • Kondetti, P., Jawali, N., Apte, S. K., & Shitole, M. G. (2012). Salt tolerance in Indian soybean (Glycine max (L.) Merill) varieties at germination and early seedling growth. Annals of Biological Research, 3, 1489–1498.

    CAS  Google Scholar 

  • Läuchli, A., & Epstein, E. (1990). Plant responses to saline and sodic conditions. In K. K. Tanji (Ed.), Agricultural Salinity Assessment and Management. ASCE manuals and reports on engineering practice No. 71 (pp. 113–137). New York: ASCE.

    Google Scholar 

  • Manivasagaperumal, R., Balamurugan, S., Thiyagarajan, G., & Sekar, J. (2011). Effect of zinc on germination, seedling growth and biochemical content of cluster bean (Cyamopsis tetragonoloba (L.) Taub). Current Botany, 2, 11–15.

    CAS  Google Scholar 

  • Marimuthu, S., & Surendran, U. (2015). Effect of nutrients and plant growth regulators on growth and yield of black gram in sandy loam soils of Cauvery new delta zone, India. Cogent Food and Agriculture, 1, 1010415.

    Article  Google Scholar 

  • Mir, B. A., Khan, T. A., & Fariduddin, Q. (2015). 24-epibrassinolide and spermidine modulate photosynthesis and antioxidant systems in Vigna radiata under salt and zinc stress. International Journal of Advanced Research (IJAR), 3, 592–608.

    Google Scholar 

  • Mishra, B. P. (2016). Effects of nitrogen and growth regulators on yield Phaseolus mungo L. International Journal of Advanced Research and Development, 1, 39–42.

    Google Scholar 

  • Mohammadi, H., Poustini, K., & Ahmadi, A. (2008). Root nitrogen remobilization and ion status of two alfalfa (Medicago sativa L.) cultivars in response to salinity stress. Journal of Agronomy and Crop Science, 194, 126–134.

    Article  CAS  Google Scholar 

  • Mondal, M. M. A., Rahman, M. A., Akter, M. B., & Fakir, M. S. A. (2011). Effect of foliar application of nitrogen and micronutrients on growth and yield in mungbean. Legume Research, 34, 166–171.

    Google Scholar 

  • Morris, J. B. (2003). Bio-functional legumes with nutraceutical, pharmaceutical, and industrial uses. Economic Botany, 57, 254–261.

    Article  CAS  Google Scholar 

  • Munns, R., Schachtman, D., & Condon, A. (1995). The significance of a two-phase growth response to salinity in wheat and barley. Functional Plant Biology, 22(561), 569.

    Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  • Munns, R., & James, R. A. (2003). Screening methods for salt tolerance: A case study with tetraploid wheat. Plant and Soil, 253, 201–218.

    Google Scholar 

  • Munns, R., James, R. A., & Lauchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of Experimental Botany, 57, 1025–1043.

    Google Scholar 

  • Munsi, P. S. (1992). Nitrogen and phosphorus nutrition response in Japan’s mint cultivation. Acta Horticulturae, 306, 436–443.

    Google Scholar 

  • Naeem, M., Khan, M. N., & Singh, M. (2005). Effect of calcium fertilization on growth, photosynthesis pigments and nodulation of mung bean (Vigna radiata L. Wilczek). Indian Journal of Applied & Pure Biology, 20, 253–254.

    Google Scholar 

  • Naeem, M. (2007). Effect of phosphorus and calcium on selected medicinally important leguminous plants. PhD Thesis, Aligarh Muslim University, Aligarh, India.

    Google Scholar 

  • Naeem, M., Khan, M. M. A., Moinuddin, & Khan, M. N. (2009a). Role of calcium in ameliorating photosynthetic capacity, nitrogen-fixation, enzyme activities, nutraceuticals and crop productivity of hyacinth bean (Lablab purpureus L.) under calcium deficient soil. Medicinal and Aromatic Plant Science and Biotechnology, 3, 64–73.

    Google Scholar 

  • Naeem, M., Idrees, M., & Khan, M. M. A. (2009b). Calcium ameliorates photosynthetic capacity, nitrate reductase and carbonic anhydrase activities, nitrogen assimilation, yield and quality attributes of Cassia sophera L. - a medicinal legume. Physiology and Molecular Biology of Plants, 15, 237–247.

    Google Scholar 

  • Naeem, M., & Khan, M. M. A. (2009). Phosphorus ameliorates crop productivity, photosynthesis, nitrate reductase activity and nutrient accumulation in coffee senna (Senna occidentalis L.) under phosphorus-deficient soil. Journal of Plant Interactions, 4, 145–153.

    Google Scholar 

  • Naeem, M., Khan, M. M. A., Moinuddin, Idrees, M., & Aftab, T. (2010). Phosphorus ameliorates crop productivity, photosynthetic efficiency, nitrogen-fixation, activities of the enzymes and content of nutraceuticals of Lablab purpureus L. Scientia Horticulturae, 126, 205–214.

    Google Scholar 

  • Naeem, M., Khan, M. M. A., & Moinuddin. (2010). Calcium chloride stimulates crop yield, photosynthetic efficiency, enzyme activities and nutraceuticals of coffee senna (Senna occidentalis L.) under calcium deficient soil. Asian Australian Journal of Plant Science & Biotechnology, 4, 30–37.

    Google Scholar 

  • Naeem M., Khan M. M. A., & Moinuddin. (2012). Role of mineral nutrients in cultivation of medicinal legumes. In: Naeem M., Khan MMA, Moinuddin (Guest Editors) Mineral Nutrition of Medicinal and Aromatic Plants, MAPSB 6 (Special Issue 1) 24-38, Global Science Books, Japan

    Google Scholar 

  • Nancy, D., Thribuvana, P., & Arulselvi, P. I. (2015). Impact of selenium fortification in Fenugreek (Trigonella foenum-graecum). Indo American Journal of Pharmaceutical Research, 5, 635–640.

    CAS  Google Scholar 

  • Netondo, G. W., Onyango, J. C., & Beck, E. (2004). Sorghum and salinity: II. Gas exchange and chlorophyll fluorescence of sorghum under salt stress. Crop Science, 44, 806–811.

    Article  Google Scholar 

  • Pariari, A., Khan, S., & Imam, M. N. (2009). Influence of boron and zinc on increasing productivity of Fenugreek seed (Trigonella foenum graecum L.) Journal of Crop and Weed, 5, 57–58.

    Google Scholar 

  • Patel, B. B., Patel, B. B., & Dave, R. S. (2011). Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of north Gujarat. Journal of Applied Technology in Environmental Sanitation, 1, 87–92.

    Google Scholar 

  • Paul, D. (2012). Osmotic stress adaptations in rhizobacteria. Journal of Basic Microbiology, 52, 1–10.

    Article  Google Scholar 

  • Rahman, I. U., Afzal, A., Iqbal, Z., Ijaz, F., Sohail, S. S., Manan, S., & Afzal, M. (2014). Response of common bean (Phaseolus vulgaris) to basal applied and foliar feeding of different nutrients application. American-Eurasian Journal of Agricultural & Environmental Sciences, 14, 851–854.

    Google Scholar 

  • Rout, N. P., Shaw, B. P. (2001). Salt tolerance in aquatic macrophytes: Ionic relation and interaction. Biologia Plantarum, 55, 91–95.

    Google Scholar 

  • Rogers, M. E., Grieve, C. M., & Shannon, M. C. (1998). The response of lucerne (Medicago sativa L.) to sodium sulphate and chloride salinity. Plant and Soil, 202, 271–280.

    Article  CAS  Google Scholar 

  • Sadeghipour, O., Monem, R., & Tajali, A.A. (2010). Production of mungbean (Vigna radiata L.) as affected by nitrogen and phosphorus fertilizer application. Journal of Applied Sciences, 10, 843–847.

    Google Scholar 

  • Samreen, T., Shah, H. U., Ullah, S., & Javid, M. (2013). Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2013.07.00.

  • Sangeetha, S., & Subramani, A. (2014). Sodium chloride stress induced alterations in germination, growth and biomolecules of black gram (Vigna mungo L.) International Journal of Environment and Bioenergy, 9, 17–28.

    CAS  Google Scholar 

  • Saviour, M. N., & Stalin, P. (2013). Influence of zinc and boron in residual blackgram productivity. Indian Journal of Science and Technology, 6, 5105–5108.

    Google Scholar 

  • Seckin, B., Sekmen, A. H., & Turkan, I. (2009). An enhancing effect of exogenous mannitol on the antioxidant enzyme activities in roots of wheat under salt stress. Journal of Plant Growth Regulation, 28, 12–20.

    Article  CAS  Google Scholar 

  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32, 237–249.

    Article  Google Scholar 

  • Shitole, S. M., & Dhumal, K. N. (2011). Effect of NaCl stress on growth, yield and sennoside content of medicinal plant Cassia angustifolia Vahl. International Journal of Current Research, 3, 181–186.

    Google Scholar 

  • Sivakumar, R., & Nandhitha, G. K. (2017). Impact of PGRs and nutrients pre-soaking on seed germination and seedling characters of mung bean under salt stress. Legume Research, 40(1), 125–131.

    Google Scholar 

  • Surendar, K. K., Vincent, S., Vanagamudi, M., & Vijayaraghavan, H. (2013). Influence of plant growth regulators and nitrogen on leaf area index, specific leaf area, specific leaf weight and yield of black gram (Vigna mungo L.) Plant Gene and Trait, 4(7), 37–42.

    Google Scholar 

  • Tabur, S., & Demir, K. (2010). Role of some growth regulators on cytogenetic activity of barley under salt stress. Plant Growth Regulation, 60, 99–104.

    Article  CAS  Google Scholar 

  • Tester, M., & Davenport, R. (2003). Na+ tolerance and Na+ transport in higher plants. Annals of Botany, 91, 503–527.

    Google Scholar 

  • Torres-García, J. R., Escalante-Estrada, J. A., Rodríguez-González, M. T., Ramírez-Ayala, C., & Martínez-Moreno, D. (2009). Exogenous application of growth regulators in snap bean under water and salinity stress. Journal of Stress Physiology & Biochemistry, 5, 13–21.

    Google Scholar 

  • Tyler, V. E., Brady, L. R., & Robbers, J. E. (1976). Glycosides. In Pharmacognosy (pp. 76–103). Philadelphia: Lea & Febiger.

    Google Scholar 

  • Velmani, S., Murugesan, S., & Arulbalachandran, D. (2015). Growth and biochemical characteristics of black gram (Vigna mungo (L.) Hepper) under NaCl salinity. International Journal of Current Trends in Research, 4, 13–17.

    Google Scholar 

  • Verma, S. R., Shivran, A. C., Bhanwaria, R., & Singh, M. (2014). Effect of vermicompost and sulphur on growth, yield and nutrient uptake of fenugreek (Trigonella foenum-graecum L.) The Bioscan, 9, 667–670.

    Google Scholar 

  • Vijayarengan, P. (2013). Changes in growth, biochemical constituents and antioxidant potentials in cluster bean Cyamopsis tetragonoloba L. Taub under zinc stress. International Journal of Current Science, 5, 37–49.

    Google Scholar 

  • Wittwer, S. H. & Teubner, F. G. (1967). Foliar absorption of mineral nutrients. Annual Review of Plant Physiology, 10, 13–32.

    Google Scholar 

  • Yamaguchi, T., & Blumwald, E. (2005). Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 10, 615–620.

    Article  CAS  PubMed  Google Scholar 

  • You-Sheng, W., Jin, W., Zhi-Min, Y., Qing-Ya, W., Bo, L., Shao-Qiong, L., Ya-Ping, L., Song-Hua, W., & Xin, S. (2004). Salicylic acid modulates aluminum-induced oxidative stress in roots of Cassia tora. Acta Botanica Sinica, 46, 819–828.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Naeem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Naeem, M. et al. (2017). Regulatory Role of Mineral Nutrients in Nurturing of Medicinal Legumes Under Salt Stress. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_12

Download citation

Publish with us

Policies and ethics