Skip to main content

The Rhizosphere and Plant Nutrition Under Climate Change

  • Chapter
  • First Online:
Essential Plant Nutrients

Abstract

The plant root–soil interfaces could be considered the rhizosphere area, which is the most important active zone in the soils for different microbial activities, biodegradation of pollutants and plant nutrition. Polluted soils are characterized by low organic matter content, limiting their microbial activity, nutrient availability and degradation of pollutants. Soil phyto- and/or bioremediation is mainly based on the use of plant roots and their associated soil microorganisms, whereas conventional approaches are based on physico-chemical methods in soil remediation. Plant root exudates are the most important compounds in the rhizosphere, which play a crucial role in the interactions between plant roots and soil microbes. It is worthy to mention that several plant species and soil microbes have been used in soil remediation for different pollutants. The role of rhizosphere and its significance in plant nutrition are mainly controlled by the change in climatic attributes including temperature, moisture content, precipitation, etc. Therefore, global warming and climate changes do have a great and serious effect on the agricultural production through their effects on the rhizosphere and in turn plant nutrition. Hence, the aim of this review is to evaluate the significance of rhizosphere in plant nutrition under the changing climate. Soil biological activity and its security will be also highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aanderud, Z. T., Jones, S. E., Schoolmaster Jr., D. R., Fierer, N., & Lennon, J. T. (2013). Sensitivity of soil respiration and microbial communities to altered snowfall. Soil Biology and Biochemistry, 57, 217–227.

    Article  CAS  Google Scholar 

  • Aanderud, Z. T., Schoolmaster Jr., D. R., & Lennon, J. T. (2011). Plants mediate the sensitivity of soil respiration to rainfall variability. Ecosystems, 14, 156–167.

    Article  CAS  Google Scholar 

  • Abad-Valle, P., Iglesias-Jiménez, E., & Álvarez-Ayuso, E. (2017). A comparative study on the influence of different organic amendments on trace element mobility and microbial functionality of a polluted mine soil. Journal of Environmental Management, 188, 287–296.

    Article  CAS  PubMed  Google Scholar 

  • Abenavoli, M. R., Panuccio, M. R., & Sorgonà, A. (2012). Root form and function in plant as an adaptation to changing climate. In P. Ahmad & M. N. V. Prasad (Eds.), Environmental adaptations and stress tolerance of plants in the era of climate change. New York: Springer. doi:10.1007/978-1-4614-0815-4_8.

    Google Scholar 

  • Abhilash, P. C., & Dubey, R. K. (2014). Integrating aboveground–belowground responses to climate change. Current Science, 106(12), 1637–1638.

    Google Scholar 

  • Abhilash, P. C., & Dubey, R. K. (2015). Root system engineering: prospects and promises. Trends in Plant Science, 20, 1360–1385.

    Google Scholar 

  • Abhilash, P. C., Dubey, R. K., Tripathi, V., Srivastava, P., Verma, J. P., & Singh, H. B. (2013a). Remediation and management of POPs-contaminated soils in a warming climate: Challenges and perspectives. Environmental Science and Pollution Research, 20, 5879–5885.

    Article  CAS  PubMed  Google Scholar 

  • Abhilash, P. C., Dubey, R. K., Tripathi, V., Srivastava, P., Verma, J. P., & Singh, H. B. (2013b). Adaptive soil management. Current Science, 104, 1275–1276.

    Google Scholar 

  • Abhilash, P. C., Tripathi, V., Dubey, R. K., & Edrisi, S. A. (2015). Coping with changes: Adaptation of trees in a changing environment. Trends in Plant Science, 20, 137–138.

    Article  CAS  Google Scholar 

  • Achakzai, K., Khalid, S., Adrees, M., Bibi, A., Ali, S., Nawaz, R., & Rizwan, M. (2017). Air pollution tolerance index of plants around brick kilns in Rawalpindi, Pakistan. Journal of Environmental Management, 190, 252–258.

    Article  CAS  PubMed  Google Scholar 

  • Adl, S. (2016). Rhizosphere, food security, and climate change: A critical role for plant-soil research. Rhizosphere, 1, 1–3.

    Article  Google Scholar 

  • Aghababaei, F., & Raiesi, F. (2015). Mycorrhizal fungi and earthworms reduce antioxidant enzyme activities in maize and sunflower plants grown in cd-polluted soils. Soil Biology and Biochemistry, 86, 87–97.

    Article  CAS  Google Scholar 

  • Aghababaei, F., Raiesi, F., & Hosseinpur, A. (2014). The combined effects of earthworms and arbuscular mycorrhizal fungi on microbial biomass and enzyme activities in a calcareous soil spiked with cadmium. Applied Soil Ecology, 75, 33–42.

    Article  Google Scholar 

  • Ahmed, M., & Stockle, C. O. (2017). Quantification of climate variability, adaptation and mitigation for agricultural sustainability. Cham, Switzerland: Springer. doi:10.1007/978-3-319-32059-5.

    Book  Google Scholar 

  • Ai, C., Liang, G., Sun, J., Wang, X., He, P., Zhou, W., & He, X. (2015). Reduced dependence of rhizosphere microbiome on plant-derived carbon in 32-year long-term inorganic and organic fertilized soils. Soil Biology and Biochemistry, 80, 70–78. doi:10.1016/j.soilbio.2014.09.028.

    Article  CAS  Google Scholar 

  • Alexander, H. D., Moczygemba, J., & Dick, K. (2016). Growth and survival of thornscrub forest seedlings in response to restoration strategies aimed at alleviating abiotic and biotic stressors. Journal of Arid Environments, 124, 180–188.

    Article  Google Scholar 

  • Ali, A. & Erenstein, O. (2016). Assessing farmer use of climate change adaptation practices and impacts on food security and poverty in Pakistan. Climate Risk Management. (in press).

    Google Scholar 

  • Aljazairi, S., & Nogués, S. (2015). The effects of depleted, current and elevated growth [CO2] in wheat are modulated by water availability. Environmental and Experimental Botany, 112, 55–66.

    Article  Google Scholar 

  • Allen, D. E., Singh, B. P., & Dalal, R. C. (2011). Soil health indicators under climate change: A review of current knowledge. In B. P. Singh et al. (Eds.), Soil health and climate change, soil biology (Vol. 29). Berlin: Springer-Verlag. doi:10.1007/978-3-642-20256-8_2.

    Google Scholar 

  • Allen, M. F., & Allen, E. B. (2017). Mycorrhizal mediation of soil fertility amidst nitrogen eutrophication and climate change. In N. C. Johnson et al. (Eds.), Mycorrhizal mediation of soil fertility, structure, and carbon storage. Oxford: Elsevier. doi:10.1016/B978-0-12-804312-7.01001-9.

    Google Scholar 

  • Almeida Prado Jr., F., Athayde, S., Mossa, J., Bohlman, S., Leite, F., & Oliver-Smith, A. (2016). How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renewable and Sustainable Energy Reviews, 53, 1132–1136.

    Article  Google Scholar 

  • Alshaal, T., Domokos-Szabolcsy, E., Marton, L., Czako, M., Katai, J., Balogh, P., Elhawat, N., El-Ramady, H., & Fari, M. (2013). Phytoremediation of bauxite-derived red mud by giant reed. Environmental Chemistry Letters, 11, 295–302. doi:10.1007/s10311-013-0406-6.

    Article  CAS  Google Scholar 

  • Alvareza, A., Yanez, M. L., Benimeli, C. S., & Amoroso, M. J. (2012). Maize plants (Zea mays) root exudates enhance lindane removal by native Streptomyces strains. International Biodeterioration and Biodegradation, 66, 14–18.

    Article  CAS  Google Scholar 

  • Alvarez, A., Saez, J. M., Costa, J. S. D., Colin, V. L., Fuentes, M. S., Cuozzo, S. A., Benimeli, C. S., Polti, M. A., & Amoroso, M. J. (2017). Actinobacteria: Current research and perspectives for bioremediation of pesticides and heavy metals. Chemosphere, 166, 41–62.

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-Martín, A., Hilton, S. L., Bending, G. D., Rodríguez-Cruz, M. S., & Sánchez-Martín, M. J. (2016). Changes in activity and structure of the soil microbial community after application of azoxystrobin or pirimicarb and an organic amendment to an agricultural soil. Applied Soil Ecology, 106, 47–57.

    Article  Google Scholar 

  • Anandhi, A., & Blocksome, C. E. (2017). Developing adaptation strategies using an agroecosystem indicator: Variability in crop failure temperatures. Ecological Indicators, 76, 30–41.

    Article  Google Scholar 

  • Arpaia, S., Birch, A. N. E., Kiss, J., van Loon, J. J. A., Messéan, A., Nuti, M., Perry, J. N., Sweet, J. B., & Tebbe, C. C. (2017). Assessing environmental impacts of genetically modified plants on non-target organisms: The relevance of in planta studies. Science of the Total Environment. doi:10.1016/j.scitotenv.2017.01.039.

  • Baetz, U. (2016). Root exudates as integral part of belowground plant defence. In C. M. F. Vos & K. Kazan (Eds.), Belowground defence strategies in plants, signaling and communication in plants. Cham, Switzerland: Springer. doi:10.1007/978-3-319-42319-7_3.

    Google Scholar 

  • Baetz, U., & Martinoia, E. (2014). Root exudates: The hidden part of plant defense. Trends in Plant Science, 19(2), 90–98.

    Article  CAS  PubMed  Google Scholar 

  • Bais, H. P., Weir, T., Perry, L., Gilroy, S., & Vivanco, J. M. (2006). The role of root exudates in rhizosphere interactions with plants and other organisms. Annual Review of Plant Biology, 57, 233–266.

    Article  CAS  PubMed  Google Scholar 

  • Bakshi, M., & Varma, A. (2017). Soil enzyme: The state-of-art. In G. Shukla & A. Varma (Eds.), Soil enzymology, soil biology (Vol. 22). Berlin: Springer-Verlag. doi:10.1007/978-3-642-14225-3_1.

    Google Scholar 

  • Balkhair, K. S., & Ashraf, M. A. (2016). Field accumulation risks of heavy metals in soil and vegetable crop irrigated with sewage water in western region of Saudi Arabia. Saudi Journal of Biological Sciences, 23(Supplement 1), S32–S44.

    Article  CAS  PubMed  Google Scholar 

  • Balser, T. C., Gutknecht, J. L. M., & Liang, C. (2010). How will climate change impact soil microbial communities? In G. R. Dixon & E. L. Tilston (Eds.), Soil microbiology and sustainable crop production. New York: Springer. doi:10.1007/978-90-481-9479-7_10.

    Google Scholar 

  • Bardgett, R. D., Freeman, C., & Ostle, N. J. (2008). Microbial contributions to climate change through carbon cycle feedbacks. The ISME Journal, 2, 805–814.

    Article  CAS  PubMed  Google Scholar 

  • Bashir, O., Khan, K., Hakeem, K. R., Mir, N. A., Rather, G. H., & Mohiuddin, R. (2016). Soil microbe diversity and root exudates as important aspects of rhizosphere ecosystem. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, soil and microbes. Cham, Switzerland: Springer. doi:10.1007/978-3-319-29573-2_15.

    Google Scholar 

  • Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. A. H. M. (2012). The rhizosphere microbiome and plant health. Trends in Plant Science, 17(8), 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Berg, G., Grube, M., Schloter, M., & Smalla, K. (2014). Unraveling the plant microbiome: Looking back and future perspectives. Frontiers in Microbiology, 5, 148. doi:10.3389/fmicb.2014.00148.

    PubMed  PubMed Central  Google Scholar 

  • Bertrand, J.-C., Doumenq, P., Guyoneaud, R., Marrot, B., Martin-Laurent, F., Matheron, R., Moulin, P., & Soulas, G. (2015). Applied microbial ecology and bioremediation: Microorganisms as major actors of pollution elimination in the environment. In J.-C. Bertrand et al. (Eds.), Environmental microbiology: Fundamentals and applications—Microbial ecology. Dordrecht: Springer. doi:10.1007/978-94-017-9118-2_16.

    Google Scholar 

  • Bielenberg, D. G., & BassiriRad, H. (2005). Nutrient acquisition of terrestrial plants in a changing climate. In H. BassiriRad (Ed.), Ecological Studies, Nutrient acquisition by plants an ecological perspective (Vol. 181). Berlin: Springer-Verlag.

    Google Scholar 

  • Bilton, M. C., Metz, J., & Tielbörger, K. (2016). Climatic niche groups: A novel application of a common assumption predicting plant community response to climate change. Perspectives in Plant Ecology, Evolution and Systematics, 19, 61–69.

    Article  Google Scholar 

  • Bojko, O., & Kabala, C. (2017). Organic carbon pools in mountain soils: Sources of variability and predicted changes in relation to climate and land use changes. Catena, 149(Part 1), 209–220.

    Article  CAS  Google Scholar 

  • Bouma, J., & McBratney, A. (2013). Framing soils as an actor when dealing with wicked environmental problems. Geoderma, 200–201, 130–139.

    Article  Google Scholar 

  • Bouma, J., van Ittersum, M. K., Stoorvogel, J. J., Batjes, N. H., Droogers, P., & Pulleman, M. M. (2017). Soil capability: Exploring the functional potentials of soils. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 27–44). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_3.

    Chapter  Google Scholar 

  • Bruce, T. J. A., & Pickett, J. A. (2007). Plant defence signalling induced by biotic attacks. Current Opinion in Plant Biology, 10(4), 387–392.

    Article  CAS  PubMed  Google Scholar 

  • Brye, K. R., McMullen, R. L., Silveira, M. L., Motschenbacher, J. M. D., Smith, S. F., Gbur, E. E., & Helton, M. L. (2016). Environmental controls on soil respiration across a southern US climate gradient: A meta-analysis. Geoderma Regional, 7(2), 110–119.

    Article  Google Scholar 

  • Burke, D. J., Weintraub, M. N., Hewins, C. R., & Kalisz, S. (2011). Relationship between soil enzyme activities, nutrient cycling and soil fungal communities in a northern hardwood forest. Soil Biology and Biochemistry, 43(4), 795–803.

    Article  CAS  Google Scholar 

  • Burns, R. G., DeForest, J. L., Marxsen, J., Sinsabaugh, R. L., Stromberger, M. E., Wallenstein, M. D., Weintraub, M. N., & Zoppini, A. (2013). Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biology and Biochemistry, 58, 216–234.

    Article  CAS  Google Scholar 

  • Cai, F., Pang, G., Miao, Y., Li, R., Li, R., Shen, Q., & Chen, W. (2017). The nutrient preference of plants influences their rhizosphere microbiome. Applied Soil Ecology, 110, 146–150.

    Article  Google Scholar 

  • Callesen, I., Harrison, R., Stupak, I., Hatten, J., Raulund-Rasmussen, K., Boyle, J., Clarke, N., & Zabowski, D. (2016). Carbon storage and nutrient mobilization from soil minerals by deep roots and rhizospheres. Forest Ecology and Management, 359, 322–331.

    Article  Google Scholar 

  • Canfora, L., Sbrana, C., Avio, L., Felici, B., Scatà, M. C., Neri, U., & Benedetti, A. (2014). Risk management tools and the case study Brassica napus: Evaluating possible effects of genetically modified plants on soil microbial diversity. Science of the Total Environment, 493, 983–994.

    Article  CAS  PubMed  Google Scholar 

  • Carré, F., Caudeville, J., Bonnard, R., Bert, V., Boucard, P., & Ramel, M. (2017). Soil contamination and human health: A major challenge for global soil security. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 275–295). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_2.

    Chapter  Google Scholar 

  • Castro, H. F., Classen, A. T., Austin, E. E., Norby, R. J., & Schadt, C. W. (2010). Soil microbial community responses to multiple experimental climate change drivers. Applied and Environmental Microbiology, 76(40), 999–1007.

    Article  CAS  PubMed  Google Scholar 

  • Cavagnaro, T. R., Cunningham, S. C., & Fitzpatrick, S. (2016). Pastures to woodlands: Changes in soil microbial communities and carbon following reforestation. Applied Soil Ecology, 107, 24–32.

    Article  Google Scholar 

  • Čerevková, A., Miklisová, D., & Cagáň, Ľ. (2017). Effects of experimental insecticide applications and season on soil nematode communities in a maize field. Crop Protection, 92, 1–15.

    Article  CAS  Google Scholar 

  • Cesco, S., Mimmo, T., Tonon, G., Tomasi, N., Pinton, R., Terzano, R., Neumann, G., Weisskopf, L., Renella, G., Landi, L., & Nannipieri, P. (2012). Plant-borne flavonoids released into the rhizosphere: Impact on soil bio-activities related to plant nutrition. A review. Biology and Fertility of Soils, 48, 123–149. doi:10.1007/s00374-011-0653-2.

    Article  CAS  Google Scholar 

  • Cesco, S., Neumann, G., Tomasi, N., Pinton, R., & Weisskopf, L. (2010). Release of plant-borne flavonoids into the rhizosphere and their role in plant nutrition. Plant and Soil, 329, 1–25. doi:10.1007/s11104-009-0266-9.

    Article  CAS  Google Scholar 

  • Chapman, N., Miller, A. J., Lindsey, K., & Whalley, W. R. (2012). Roots, water, and nutrient acquisition: Let’s get physical. Trends in Plant Science, 17(12), 701–710.

    Article  CAS  PubMed  Google Scholar 

  • Chaudhry, V., Dang, H. Q., Tran, N. Q., Mishra, A., Chauhan, P. S., Gill, S. S., Nautiyal, C. S., & Tuteja, N. (2012). Impact of salinity-tolerant MCM6 transgenic tobacco on soil enzymatic activities and the functional diversity of rhizosphere microbial communities. Research in Microbiology, 163(8), 511–517.

    Article  CAS  PubMed  Google Scholar 

  • Chen, B., Zou, D., & Jiang, H. (2015). Elevated CO2 exacerbates competition for growth and photosynthesis between Gracilaria lemaneiformis and Ulva lactuca. Aquaculture, 443, 49–55.

    Article  CAS  Google Scholar 

  • Chen, W.-Y., Suzuki, T., & Lackner, M. (2017a). Handbook of climate change mitigation and adaptation. Cham, Switzerland: Springer. doi:10.1007/978-3-319-14409-2.

    Book  Google Scholar 

  • Chen, Z., Wang, H., Liu, X., Zhao, X., Lu, D., Zhou, J., & Li, C. (2017b). Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice–wheat cropping system. Soil and Tillage Research, 165, 121–127.

    Article  Google Scholar 

  • Chen, Z.-J., Tian, Y.-H., Zhang, Y., Song, B.-R., Li, H.-C., & Chen, Z.-H. (2016). Effects of root organic exudates on rhizosphere microbes and nutrient removal in the constructed wetlands. Ecological Engineering, 92, 243–250.

    Article  Google Scholar 

  • Cheng, G., Wang, L., & Lan, H. (2016). Cloning of PEPC-1 from a C4 halophyte Suaeda aralocaspica without Kranz anatomy and its recombinant enzymatic activity in responses to abiotic stresses. Enzyme and Microbial Technology, 83, 57–67.

    Article  CAS  PubMed  Google Scholar 

  • Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C., & Patterson, C. M. (2015a). Direct and indirect effects of climate change on soil microbial and soil microbial plant interactions: What lies ahead? Ecosphere, 6(8), 1–21.

    Article  Google Scholar 

  • Classen, A. T., Sundqvist, M. K., Henning, J. A., Newman, G. S., Moore, J. A. M., Cregger, M. A., Moorhead, L. C., & Patterson, C. M. (2015b). Direct and indirect effects of climate change on soil microbial and soil microbial-plant interactions: What lies ahead? Ecosphere, 6(8), 130.

    Article  Google Scholar 

  • Coffey, R., Benham, B., Wolfe, M. L., Dorai-Raj, S., Bhreathnach, N., O’Flaherty, V., Cormican, M., & Cummins, E. (2016). Sensitivity of streamflow and microbial water quality to future climate and land use change in the west of Ireland. Regional Environmental Change, 16, 2111–2128. doi:10.1007/s10113-015-0912-0.

    Article  Google Scholar 

  • Compant, S., Saikkonen, K., Mitter, B., Campisano, A., & Mercado-Blanco, J. (2016). Editorial special issue: Soil, plants and endophytes. Plant and Soil, 405, 1–11. doi:10.1007/s11104-016-2927-9.

    Article  CAS  Google Scholar 

  • Crowther, T. W., Thomas, S. M., Maynard, D. S., Baldrian, P., Covey, K., Frey, S. D., van Diepen, L. T. A., & Bradford, M. A. (2015). Biotic interactions mediate soil microbial feedbacks to climate change. Proceedings of the National Academy of Sciences, 112(22), 7033–7038.

    Article  CAS  Google Scholar 

  • Daou, L., Périssol, C., Luglia, M., Calvert, V., & Criquet, S. (2016). Effects of drying–rewetting or freezing–thawing cycles on enzymatic activities of different Mediterranean soils. Soil Biology and Biochemistry, 93, 142–149.

    Article  CAS  Google Scholar 

  • Das, S., Chou, M.-L., Jean, J.-S., Yang, H.-J., & Kim, P. J. (2017). Arsenic-enrichment enhanced root exudates and altered rhizosphere microbial communities and activities in hyperaccumulator Pteris vittata. Journal of Hazardous Materials, 325, 279–287.

    Article  CAS  PubMed  Google Scholar 

  • Davidson, E., Janssens, I., & Luo, Y. (2006). On the variability of respiration in terrestrial ecosystems: Moving beyond Q(10). Global Change Biology, 12, 154–164.

    Article  Google Scholar 

  • De Coninck, B., Timmermans, P., Vos, C., Cammue, B. P. A., & Kazan, K. (2015). What lies beneath: Belowground defense strategies in plants. Trends in Plant Science, 20(2), 91–101.

    Article  PubMed  CAS  Google Scholar 

  • De Llano-Paz, F., Fernandez, P. M., & Soares, I. (2016). Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues. Energy, 115(Part 2), 1347–1360.

    Article  Google Scholar 

  • de Medeiros, E. V., Duda, G. P., dos Santos, L. A. R., de Sousa Lima, J. R., de Almeida-Cortêz, J. S., Hammecker, C., Lardy, L., & Cournac, L. (2017). Soil organic carbon, microbial biomass and enzyme activities responses to natural regeneration in a tropical dry region in Northeast Brazil. Catena, 151, 137–146.

    Article  CAS  Google Scholar 

  • Dessaux, Y., Grandclément, C., & Faure, D. (2016). Engineering the Rhizosphere. Trends in Plant Science, 21(3), 266–278.

    Article  CAS  PubMed  Google Scholar 

  • Doornbos, R. F., van Loon, L. C., & Bakker, P. A. H. M. (2012). Impact of root exudates and plant defense signaling on bacterial communities in the rhizosphere. A review. Agronomy for Sustainable Development, 32, 227–243.

    Article  Google Scholar 

  • Drigo, B., Kowalchuk, G. A., & van Veen, J. A. (2008). Climate change goes underground: Effects of elevated atmospheric CO2 on microbial community structure and activities in the rhizosphere. Biology and Fertility of Soils, 44, 667–679. doi:10.1007/s00374-008-0277-3.

    Article  Google Scholar 

  • Duan, B., Zhang, Y., Xu, G., Chen, J., Paquette, A., & Peng, S. (2015). Long-term responses of plant growth, soil microbial communities and soil enzyme activities to elevated CO2 and neighbouring plants. Agricultural and Forest Meteorology, 213, 91–101.

    Article  Google Scholar 

  • Dubrovskaya, E., Pozdnyakova, N., Golubev, S., Muratova, A., Grinev, V., Bondarenkova, A., & Turkovskaya, O. (2017). Peroxidases from root exudates of Medicago sativa and Sorghum bicolor: Catalytic properties and involvement in PAH degradation. Chemosphere, 169, 224–232.

    Article  CAS  PubMed  Google Scholar 

  • Duran-Encalada, J. A., Paucar-Caceres, A., Bandala, E. R., & Wright, G. H. (2017). The impact of global climate change on water quantity and quality: A system dynamics approach to the US–Mexican transborder region. European Journal of Operational Research, 256(2), 567–581.

    Article  Google Scholar 

  • Dutta, H., & Dutta, A. (2016). The microbial aspect of climate change. Energy, Ecology and Environment, 1(4), 209–232. doi:10.1007/s40974-016-0034-7.

    Article  Google Scholar 

  • Edwards, S. J., & Kjellerup, B. V. (2013). Applications of biofilms in bioremediation and biotransformation of persistent organic pollutants, pharmaceuticals/personal care products, and heavy metals. Applied Microbiology and Biotechnology, 97, 9909–9921. doi:10.1007/s00253-013-5216-z.

    Article  CAS  PubMed  Google Scholar 

  • El-Ramady, H. (2008). A contribution on the bio-actions of rare earth elements in the soil/plant environment. Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpfl anzen, Quedlinburg, Braunschweig, Germany.

    Google Scholar 

  • El-Ramady, H., Abdalla, N., Alshaal, T., Domokos-Szabolcsy, É., Elhawat, N., Prokisch, J., Sztrik, A., Fári, M., El-Marsafawy, S., & Shams, M. S. (2015a). Selenium in soils under climate change, implication for human health. Environmental Chemistry Letters, 13(1), 1–19. doi:10.1007/s10311-014-0480-4.

    Article  CAS  Google Scholar 

  • El-Ramady, H., Abdalla, N., Alshaal, T., Elhenawy, A. S., Shams, M. S., Faizy, S. E.-D. A., Belal, E. B., Shehata, S. A., Ragab, M. I., Amer, M. M., Fari, M., Sztrik, A., Prokisch, J., Selmar, D., Schnug, E., Pilon-Smits, E. A. H., El-Marsafawy, S. M., & Domokos-Szabolcsy, E. (2015b). Giant reed for selenium phytoremediation under changing climate. Environmental Chemistry Letters, 13(4), 359–380. doi:10.1007/s10311-015-0523-5.

    Article  CAS  Google Scholar 

  • El-Ramady, H. R., Alshaal, T. A., Amer, M., Domokos-Szabolcsy, É., Elhawat, N., Prokisch, J., & Fári, M. (2014a). Soil quality and plant nutrition. In H. Ozier-Lafontaine & M. Lesueur-Jannoyer (Eds.), Sustainable agriculture Reviews 14: Agroecology and global change, sustainable agriculture Reviews 14. Cham, Switzerland: Springer. doi:10.1007/978-3-319-06016-3_11.

    Google Scholar 

  • El-Ramady, H. R., Alshaal, T. A., Shehata, S. A., Domokos-Szabolcsy, É., Elhawat, N., Prokisch, J., Fári, M., & Marton, L. (2014b). Plant nutrition: From liquid medium to micro-farm. In H. Ozier-Lafontaine & M. Lesueur-Jannoyer (Eds.), Sustainable agriculture 449 Reviews 14: Agroecology and global change, sustainable agriculture Reviews 14. Cham, Switzerland: Springer. doi:10.1007/978-3-319-06016-3_12.

    Google Scholar 

  • Ennigrou, A., Casabianca, H., Laarif, A., Hanchi, B., & Hosni, K. (2017). Maturation-related changes in phytochemicals and biological activities of the Brazilian pepper tree (Schinus terebinthifolius Raddi) fruits. South African Journal of Botany, 108, 407–415.

    Article  CAS  Google Scholar 

  • Feng, J., Wang, J., Ding, L., Yao, P., Qiao, M., & Yao, S. (2017). Meta-analyses of the effects of major global change drivers on soil respiration across China. Atmospheric Environment, 150, 181–186.

    Article  CAS  Google Scholar 

  • Ferrarini, A., Alatalo, J. M., Gervasoni, D., & Foggi, B. (2017). Exploring the compass of potential changes induced by climate warming in plant communities. Ecological Complexity, 29, 1–9.

    Article  Google Scholar 

  • Field, D. J. (2017). Soil security: Dimensions. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 4–23). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_2.

    Chapter  Google Scholar 

  • Field, D. J., Morgan, C. L. S., & McBratney, A. B. (2017). Global soil security, Progress in soil science series. Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3.

    Book  Google Scholar 

  • Francés, G. E., Quevauviller, P., González, E. S. M., & Amelin, E. V. (2017). Climate change policy and water resources in the EU and Spain. A closer look into the water framework directive. Environmental Science & Policy, 69, 1–12.

    Article  Google Scholar 

  • Franco-Andreu, L., Gómez, I., Parrado, J., García, C., Hernández, T., & Tejada, M. (2016). Behavior of two pesticides in a soil subjected to severe drought: Effects on soil biology. Applied Soil Ecology, 105, 17–24.

    Article  Google Scholar 

  • French, S., Levy-Booth, D., Samarajeewa, A., Shannon, K. E., Smith, J., & Trevors, J. T. (2009). Elevated temperatures and carbon dioxide concentrations: Effects on selected microbial activities in temperate agricultural soils. World Journal of Microbiology and Biotechnology, 25, 1887–1900. doi:10.1007/s11274-009-0107-2.

    Article  CAS  Google Scholar 

  • Freund, D. M., & Hegeman, A. D. (2017). Recent advances in stable isotope-enabled mass spectrometry-based plant metabolomics. Current Opinion in Biotechnology, 43, 41–48.

    Article  CAS  PubMed  Google Scholar 

  • Fu, S., & Gu, Y. (2017). Highway toll and air pollution: Evidence from Chinese cities. Journal of Environmental Economics and Management, 83, 32–49.

    Article  Google Scholar 

  • Gao, B., Han, L., Hao, H., & Zhou, H. (2016). Pollution characteristics of mercury (hg) in surface sediments of major basins, China. Ecological Indicators, 67, 577–585.

    Article  CAS  Google Scholar 

  • Gohar, A. A., & Cashman, A. (2016). A methodology to assess the impact of climate variability and change on water resources, food security and economic welfare. Agricultural Systems, 147, 51–64.

    Article  Google Scholar 

  • Gömöryová, E., Ujházy, K., Martinák, M., & Gömöry, D. (2013). Soil microbial community response to variation in vegetation and abiotic environment in a temperate old-growth forest. Applied Soil Ecology, 68, 10–19.

    Article  Google Scholar 

  • Gondhalekar, D. & Ramsauer, T. (2016). Nexus City: Operationalizing the urban Water-Energy-Food Nexus for climate change adaptation in Munich, Germany. Urban Climate. (in press).

    Google Scholar 

  • Greer, D. H. (2017). Temperature and CO2 dependency of the photosynthetic photon flux density responses of leaves of Vitis vinifera cvs. Chardonnay and merlot grown in a hot climate. Plant Physiology and Biochemistry, 111, 295–303.

    Article  CAS  PubMed  Google Scholar 

  • Grunwald, S., Clingensmith, C. M., Gavilan, C. P., Mizuta, K., Wilcox, R. K. K., Pinheiro, É. F. M., Ceddia, M. B., & Ross, C. W. (2017a). Integrating new perspectives to address global soil security: Ideas from integral ecology. In D. J. Field et al. (Eds.), Global soil security, progress in soil science. Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_28.

    Google Scholar 

  • Grunwald, S., Mizuta, K., Ceddia, M. B., Pinheiro, É. F. M., Wilcox, R. K. K., Gavilan, C. P., Ross, C. W., & Clingensmith, C. M. (2017b). The meta soil model: An integrative multi- model framework for soil security. In D. J. Field et al. (Eds.), Global soil security, progress in soil science. Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_27.

    Google Scholar 

  • Gruwez, R., De Frenne, P., De Schrijver, A., Vangansbeke, P., & Verheyen, K. (2016). Climate warming and atmospheric deposition affect seed viability of common juniper (Juniperus communis) via their impact on the nutrient status of the plant. Ecological Research. doi:10.1007/s11284-016-1422-3.

  • Guan, Z., Lu, S., Huo, Y., Guan, Z.-P., Liu, B., & Wei, W. (2016). Do genetically modified plants affect adversely on soil microbial communities? Agriculture, Ecosystems & Environment, 235, 289–305.

    Article  Google Scholar 

  • Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jingsong, Y., & Xiangping, W. (2017). Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems & Environment, 237, 274–279.

    Article  CAS  Google Scholar 

  • Guarino, C., & Sciarrillo, R. (2017). Effectiveness of in situ application of an integrated phytoremediation system (IPS) by adding a selected blend of rhizosphere microbes to heavily multi-contaminated soils. Ecological Engineering, 99, 70–82.

    Article  Google Scholar 

  • Gubelit, Y., Polyak, Y., Dembska, G., Pazikowska-Sapota, G., Zegarowski, L., Kochura, D., Krivorotov, D., Podgornaya, E., Burova, O., & Maazouzi, C. (2016). Nutrient and metal pollution of the eastern gulf of Finland coastline: Sediments, macroalgae, microbiota. Science of the Total Environment, 550, 806–819.

    Article  CAS  PubMed  Google Scholar 

  • Gul, S., & Whalen, J. K. (2016). Biochemical cycling of nitrogen and phosphorus in biochar-amended soils. Soil Biology and Biochemistry, 103, 1–15.

    Article  CAS  Google Scholar 

  • Guo, M., Gong, Z., Miao, R., Su, D., Li, X., Jia, C., & Zhuang, J. (2017). The influence of root exudates of maize and soybean on polycyclic aromatic hydrocarbons degradation and soil bacterial community structure. Ecological Engineering, 99, 22–30.

    Article  Google Scholar 

  • Habtemariam, L. T., Kassa, G. A., & Gandorfer, M. (2017). Impact of climate change on farms in smallholder farming systems: Yield impacts, economic implications and distributional effects. Agricultural Systems, 152, 58–66.

    Article  Google Scholar 

  • Haichar, F. Z., Santaella, C., Heulin, T., & Achouak, W. (2014). Root exudates mediated interactions belowground. Soil Biology and Biochemistry, 77, 69–80.

    Article  CAS  Google Scholar 

  • Hakeem, K. R., & Akhtar, M. S. (2016). Plant, soil and microbes: Mechanisms and molecular interactions (Vol. 2). Cham, Switzerland: Springer. doi:10.1007/978-3-319-29573-2.

    Book  Google Scholar 

  • Hakeem, K. R., Akhtar, M. S., & Abdullah, S. N. A. (2016). Plant, soil and microbes: Implications in crop science (Vol. 1). Cham, Switzerland: Springer. doi:10.1007/978-3-319-27455-3.

    Book  Google Scholar 

  • Han, D., Currell, M. J., & Cao, G. (2016). Deep challenges for China’s war on water pollution. Environmental Pollution, 218, 1222–1233.

    Article  CAS  PubMed  Google Scholar 

  • Hansda, A., Kumar, V., & Anshumali. (2017). Influence of cu fractions on soil microbial activities and risk assessment along cu contamination gradient. Catena, 151, 26–33.

    Article  CAS  Google Scholar 

  • Hardoim, P. R., van Overbeek, L. S., Berg, G., Pirttilä, A. M., Compant, S., Campisano, A., Döring, M., & Sessitsche, A. (2015). The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiology and Molecular Biology Reviews, 79(3). doi:10.1128/MMBR.00050-14.

  • Hartmann, A., Rothballer, M., Schmid, M., & Hiltner, L. (2008). A pioneer in rhizosphere microbial ecology and soil bacteriology research. Plant and Soil, 312, 7–14.

    Article  CAS  Google Scholar 

  • Hernández, M., Conrad, R., Klose, M., Ma, K., & Lu, Y. (2017). Structure and function of methanogenic microbial communities in soils from flooded rice and upland soybean fields from Sanjiang plain, NE China. Soil Biology and Biochemistry, 105, 81–91.

    Article  CAS  Google Scholar 

  • Hou, Y., Liu, X., Zhang, X., Chen, X., & Tao, K. (2016). Effects of key components of S. triqueter root exudates on fractions and bioavailability of pyrene–lead co-contaminated soils. International journal of Environmental Science and Technology, 13, 887–896. doi:10.1007/s13762-015-0927-6.

    Article  CAS  Google Scholar 

  • Huang, S., Jia, X., Zhao, Y., Bai, B., & Chang, Y. (2017a). Elevated CO2 benefits the soil microenvironment in the rhizosphere of Robinia pseudoacacia L. seedlings in cd- and Pb-contaminated soils. Chemosphere, 168, 606–616.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Ouyang, W., Wu, H., Liu, H., & Andrea, C. (2017b). Long-term diffuse phosphorus pollution dynamics under the combined influence of land use and soil property variations. Science of the Total Environment, 579, 1894–1903.

    Article  CAS  PubMed  Google Scholar 

  • Huang, M., Chen, J., Cao, F., Jiang, L., & Zou, Y. (2016). Rhizosphere processes associated with the poor nutrient uptake in no-tillage rice (Oryza sativa L.) at tillering stage. Soil and Tillage Research, 163, 10–13.

    Article  Google Scholar 

  • Huang, X. F., Chaparro, J. M., Reardon, K., Zhang, R., Shen, Q., & Vivanco, J. M. (2014). Rhizosphere interactions: Root exudates, microbes, and microbial communities. Botany, 92, 267–275.

    Article  Google Scholar 

  • Ibekwe, A. M., Ors, S., Ferreira, J. F. S., Liu, X., & Suarez, D. L. (2017). Seasonal induced changes in spinach rhizosphere microbial community structure with varying salinity and drought. Science of the Total Environment, 579, 1485–1495.

    Article  CAS  Google Scholar 

  • Imadi, S. R., Ali, Z., Hasan, H., & Gul, A. (2016). Soil pollution and remediation. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, soil and microbes. Cham, Switzerland: Springer. doi:10.1007/978-3-319-29573-2_18.

    Google Scholar 

  • IPCC. (2014). Climate change 2014: Impacts, adaptation, and vulnerability, Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • IPCC, Intergovernmental Panel on Climate Change. (2007). Climate change 2007: The physical science basis. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Iversen, C., & Norby, R. (2014). Terrestrial plant productivity and carbon allocation in a changing climate. In B. Freedman (Ed.), Global environmental change. Dordrecht: Springer. doi:10.1007/978-94-007-5784-4_2.

    Google Scholar 

  • Jain, R., & Pandey, A. (2016). Soil enzymes and microbial endophytes as indicators of climate variation along an altitudinal gradient with respect to wheat rhizosphere under mountain ecosystem. Rhizosphere, 2, 75–84.

    Article  Google Scholar 

  • Jaiswal, D. K., & Verma, J. P. (2016). The significance of plant-associated microbial rhizosphere for the degradation of xenobiotic compounds. In A. Singh et al. (Eds.), Plant responses to xenobiotics. Singapore: Springer Nature Singapore Pte Ltd. doi:10.1007/978-981-10-2860-1_13.

    Google Scholar 

  • Jha, P., Panwar, J., & Jha, P. N. (2015). Secondary plant metabolites and root exudates: Guiding tools for polychlorinated biphenyl biodegradation. International journal of Environmental Science and Technology, 12, 789–802. doi:10.1007/s13762-014-0515-1.

    Article  CAS  Google Scholar 

  • Jia, H., Lu, H., Dai, M., Hong, H., Liu, J., & Yan, C. (2016). Effect of root exudates on sorption, desorption, and transport of phenanthrene in mangrove sediments. Marine Pollution Bulletin, 109(1), 171–177.

    Article  CAS  PubMed  Google Scholar 

  • Jia, Z., Deng, J., Chen, N., Shi, W., Tang, X., & Xu, H. (2017). Bioremediation of cadmium-dichlorophen co-contaminated soil by spent Lentinus edodes substrate and its effects on microbial activity and biochemical properties of soil. Journal of Soils and Sediments, 17, 315–325. doi:10.1007/s11368-016-1562-7.

    Article  CAS  Google Scholar 

  • Johnson, S. N., Benefer, C. M., Frew, A., Griffiths, B. S., Hartley, S. E., Karley, A. J., Rasmann, S., Schumann, M., Sonnemann, I., & Robert, C. A. M. (2016). New frontiers in belowground ecology for plant protection from root-feeding insects. Applied Soil Ecology, 108, 96–107.

    Article  Google Scholar 

  • Kabiri, V., Raiesi, F., & Ghazavi, M. A. (2016). Tillage effects on soil microbial biomass, SOM mineralization and enzyme activity in a semi-arid Calcixerepts. Agriculture, Ecosystems & Environment, 232, 73–84.

    Article  CAS  Google Scholar 

  • Kahlon, R. S. (2016). Biodegradation and bioremediation of organic chemical pollutants by Pseudomonas. In R. S. Kahlon (Ed.), Pseudomonas: Molecular and applied biology. Cham, Switzerland: Springer. doi:10.1007/978-3-319-31198-2_9.

    Chapter  Google Scholar 

  • Kang, S., X Hao, T. D., L Tong, X. S., Lu, H., Xi, L., Huo, Z., Li, S., & Ding, R. (2017). Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice. Agricultural Water Management, 179, 5–17.

    Article  Google Scholar 

  • Kayler, Z., Keitel, C., Jansen, K., & Gessler, A. (2017). Experimental evidence of two mechanisms coupling leaf-level C assimilation to rhizosphere CO2 release. Environmental and Experimental Botany, 135, 21–26.

    Article  CAS  Google Scholar 

  • Khan, K. S., Mack, R., Castillo, X., Kaiser, M., & Joergensen, R. G. (2016). Microbial biomass, fungal and bacterial residues, and their relationships to the soil organic matter C/N/P/S ratios. Geoderma, 271, 115–123.

    Article  CAS  Google Scholar 

  • Kim, S., & Kang, H. (2011). Effects of elevated CO2 and Pb on phytoextraction and enzyme activity. Water, Air, and Soil Pollution, 219, 365–375.

    Article  CAS  Google Scholar 

  • Kim, Y.-N., Robinson, B., Lee, K.-A., Boyer, S., & Dickinson, N. (2017). Interactions between earthworm burrowing, growth of a leguminous shrub and nitrogen cycling in a former agricultural soil. Applied Soil Ecology, 110, 79–87.

    Article  Google Scholar 

  • Koch, A. (2017). Soil security for agricultural productivity: The policy disconnect and a promising future. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 425–435). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_39.

    Chapter  Google Scholar 

  • Koch, A., McBratney, A. B., Adams, M., Field, D. J., Hill, R., Lal, R., Abbott, L., Angers, D., Baldock, J., Barbier, E., Bird, M., Bouma, J., Chenu, C., Crawford, J., Flora, C. B., Goulding, K., Grunwald, S., Jastrow, J., Lehmann, J., Lorenz, K., Minasny, B., Morgan, C., O’Donnell, A., Parton, W., Rice, C. W., Wall, D. H., Whitehead, D., Young, I., & Zimmermann, M. (2013). Soil security: Solving the global soil crisis. Global Policy, 4(4), 434–441.

    Article  Google Scholar 

  • Koch, A., McBratney, A. B., & Lal, R. (2012). Global soil week: Put soil security on the global agenda. Nature, 492, 186.

    Article  CAS  PubMed  Google Scholar 

  • Kolokytha, E., Oishi, S., & Teegavarapu, R. S. V. (2017). Sustainable water resources planning and management under climate change. Singapore: Springer. doi:10.1007/978-981-10-2051-3.

    Book  Google Scholar 

  • Kumar, V., Bisht, S., Teotia, P., Sharma, S., & Solanki, A. S. (2013). Interaction between G. fasciculatum and A. chroococcum for yield, nutrients uptake and cost economy of Lepidium sativum in Indian arid region. Thai Journal of Agricultural Science, 46(1), 21–28.

    Google Scholar 

  • Kumar, V., Kumar, M., Shrivastava, N., Bisht, S., Sharma, S., & Varma, A. (2016a). Interaction among rhizospheric microbes, soil, and plant roots: Influence on micronutrient uptake and bioavailability. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, soil and microbes. Cham, Switzerland: Springer. doi:10.1007/978-3-319-29573-2_8.

    Google Scholar 

  • Kumar, R., Mina, U., Gogoi, R., Bhatia, A., & Harit, R. C. (2016b). Effect of elevated temperature and carbon dioxide levels on maydis leaf blight disease tolerance attributes in maize. Agriculture, Ecosystems & Environment, 231, 98–104.

    Article  CAS  Google Scholar 

  • Kvesitadze, G., Khatisashvili, G., Sadunishvili, T., & Kvesitadze, E. (2015). Plants for remediation: Uptake, translocation and transformation of organic pollutants. In M. Öztürk et al. (Eds.), Plants, pollutants and remediation. Dordrecht: Springer. doi:10.1007/978-94-017-7194-8_12.

    Google Scholar 

  • Lal, R. (2009). Soils and world food security. Soil and Tillage Research, 102(1), 1–4.

    Article  Google Scholar 

  • Lal, R. (2016). Beyond COP 21: Potential and challenges of the “4 per thousand” initiative. Journal of Soil and Water Conservation, 71, 20A–25A.

    Article  Google Scholar 

  • Lal, R., Singh, B. R., Mwaseba, D. L., Kraybill, D., Hansen, D. O., & Eik, L. O. (2015). Sustainable intensification to advance food security and enhance climate resilience in Africa. Heidelberg: Springer. doi:10.1007/978-3-319-09360-4.

    Book  Google Scholar 

  • Lambers, H., Mougel, C., Jaillard, B., & Hinsinger, P. (2009). Plant-microbe-soil interactions in the rhizosphere: An evolutionary perspective. Plant and Soil, 321, 83–115. doi:10.1007/s11104-009-0042-x.

    Article  CAS  Google Scholar 

  • Lareen, A., Burton, F., & Schaefer, P. (2016). Plant root-microbe communication in shaping root microbiomes. Plant Molecular Biology, 90, 575–587. doi:10.1007/s11103-015-0417-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Fevre, R., & Schornack, S. (2016). Belowground defence strategies in plants: Parallels between root responses to beneficial and detrimental microbes. In C. M. F. Vos & K. Kazan (Eds.), Belowground defence strategies in plants, signaling and communication in plants. Cham, Switzerland: Springer. doi:10.1007/978-3-319-42319-7_2.

    Google Scholar 

  • Le, T. T., Son, M.-H., Nam, I.-H., Yoon, H., Kang, Y.-G., & Chang, Y.-S. (2017). Transformation of hexabromocyclododecane in contaminated soil in association with microbial diversity. Journal of Hazardous Materials, 325, 82–89.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K.-Y., Bosch, J., & Meckenstock, R. U. (2012). Use of metal-reducing bacteria for bioremediation of soil contaminated with mixed organic and inorganic pollutants. Environmental Geochemistry and Health, 34, 135–142. doi:10.1007/s10653-011-9406-2.

    Article  CAS  PubMed  Google Scholar 

  • Lee, S.-H., & Kang, H. (2016). Elevated CO2 causes a change in microbial communities of rhizosphere and bulk soil of salt marsh system. Applied Soil Ecology, 108, 307–314.

    Article  Google Scholar 

  • León, P., Espejo, R., Gómez-Paccard, C., Hontoria, C., Mariscal, I., Renella, G., & Benito, M. (2017). No tillage and sugar beet foam amendment enhanced microbial activity of degraded acidic soils in south West Spain. Applied Soil Ecology, 109, 69–74.

    Article  Google Scholar 

  • Leong, C. (2016). Resilience to climate change events: The paradox of water (in)-security. Sustainable Cities and Society, 27, 439–447.

    Article  Google Scholar 

  • Lewis, K. L., DeLaune, P., & Keeling, W. (2017). Securing our soil in intensive monoculture cropping systems. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 145–151). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_13.

    Chapter  Google Scholar 

  • Li, H., Yang, S., Xu, Z., Yan, Q., Li, X., van Nostrand, J. D., He, Z., Yao, F., Han, X., Zhou, J., Deng, Y., & Jiang, Y. (2017). Responses of soil microbial functional genes to global changes are indirectly influenced by aboveground plant biomass variation. Soil Biology and Biochemistry, 104, 18–29.

    Article  CAS  Google Scholar 

  • Liang, S., Jin, Y., Liu, W., Li, X., Shen, S., & Ding, L. (2017). Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment. Journal of Environmental Management, 190, 170–175.

    Article  CAS  PubMed  Google Scholar 

  • Liu, G., Du, Q., & Li, J. (2017a). Interactive effects of nitrate-ammonium ratios and temperatures on growth, photosynthesis, and nitrogen metabolism of tomato seedlings. Scientia Horticulturae, 214, 41–50.

    Article  CAS  Google Scholar 

  • Liu, G., Ling, S., Zhan, X., Lin, Z., Zhang, W., & Lin, K. (2017b). Interaction effects and mechanism of Pb pollution and soil microorganism in the presence of earthworm. Chemosphere, 173, 227–234.

    Article  CAS  PubMed  Google Scholar 

  • Liu, B., Liu, X., Huo, S., Chen, X., Wu, L., Chen, M., Zhou, K., Li, Q., & Peng, L. (2017c). Properties of root exudates and rhizosphere sediment of Bruguiera gymnorrhiza (L.) Journal of Soils and Sediments, 17, 266–276. doi:10.1007/s11368-016-1541-z.

    Article  CAS  Google Scholar 

  • Liu, L., Monaco, T. A., Sun, F., Liu, W., Gan, Y., & Sun, G. (2017d). Altered precipitation patterns and simulated nitrogen deposition effects on phenology of common plant species in a Tibetan Plateau alpine meadow. Agricultural and Forest Meteorology, 236, 36–47.

    Article  Google Scholar 

  • Liu, S.-H., Zeng, G.-M., Niu, Q.-Y., Liu, Y., Zhou, L., Jiang, L.-H., Tan, X., Xu, P., Zhang, C., & Cheng, M. (2017e). Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresource Technology, 224, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Liu, W., Hou, J., Wang, Q., Yang, H., Luo, Y., & Christie, P. (2015). Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum-contaminated soil. Plant and Soil, 389, 109–119. doi:10.1007/s11104-014-2345-9.

    Article  CAS  Google Scholar 

  • Lozano-García, B., Muñoz-Rojas, M., & Parras-Alcántara, L. (2017). Climate and land use changes effects on soil organic carbon stocks in a Mediterranean semi-natural area. Science of the Total Environment, 579, 1249–1259.

    Article  PubMed  CAS  Google Scholar 

  • Lu, Y., Song, S., Wang, R., Liu, Z., Meng, J., Sweetman, A. J., Jenkins, A., Ferrier, R. C., Li, H., Luo, W., & Wang, T. (2015). Impacts of soil and water pollution on food safety and health risks in China. Environment International, 77, 5–15.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, R., & Roson, R. (2016). Climate change, water and security in the Mediterranean: Introduction to the special issue. Science of the Total Environment, 543(Part B), 847–850.

    Article  CAS  PubMed  Google Scholar 

  • Lv, M., Shao, Y., Lin, Y., Liang, C., Dai, J., Liu, Y., Fan, P., Zhang, W., & Fu, S. (2016). Plants modify the effects of earthworms on the soil microbial community and its activity in a subtropical ecosystem. Soil Biology and Biochemistry, 103, 446–451.

    Article  CAS  Google Scholar 

  • Lv, T., Carvalho, P. N., Zhang, L., Zhang, Y., Button, M., Arias, C. A., Weber, K. P., & Brix, H. (2017). Functionality of microbial communities in constructed wetlands used for pesticide remediation: Influence of system design and sampling strategy. Water Research, 110, 241–251.

    Article  CAS  PubMed  Google Scholar 

  • Maddela, N. R., Golla, N., & Vengatampalli, R. (2017). Soil enzymes influence of sugar industry effluents on soil enzyme activities. Cham, Switzerland: Springer. doi:10.1007/978-3-319-42655-6.

    Google Scholar 

  • Maheshwari, D. K., Kumar, S., Maheshwari, N. K., Patel, D., & Saraf, M. (2012). Nutrient availability and management in the rhizosphere by microorganisms. In D. K. Maheshwari (Ed.), Bacteria in agrobiology: Stress management. Berlin: Springer-Verlag. doi:10.1007/978-3-642-23465-1_15.

    Google Scholar 

  • Markovska, N., Duić, N., Mathiesen, B. V., Guzović, Z., Piacentino, A., Schlör, H., & Lund, H. (2016). Addressing the main challenges of energy security in the twenty-first century—Contributions of the conferences on sustainable development of energy, water and environment systems. Energy, 115(Part 3), 1504–1512.

    Article  Google Scholar 

  • Mârza, B., Angelescu, C., & Tindeche, C. (2015). Agricultural insurances and food security. The new climate change challenges. Procedia Economics and Finance, 27, 594–599.

    Article  Google Scholar 

  • Masciandaro, G., Macci, C., Peruzzi, E., Ceccanti, B., & Doni, S. (2013). Organic matter–microorganism–plant in soil bioremediation: A synergic approach. Reviews in Environmental Science and Biotechnology, 12, 399–419. doi:10.1007/s11157-013-9313-3.

    Article  CAS  Google Scholar 

  • Matsumoto, K., & Andriosopoulos, K. (2016). Energy security in East Asia under climate mitigation scenarios in the 21st century. Omega, 59(Part A), 60–71.

    Article  Google Scholar 

  • Mauffret, A., Baran, N., & Joulian, C. (2017). Effect of pesticides and metabolites on groundwater bacterial community. Science of the Total Environment, 576, 879–887.

    Article  CAS  PubMed  Google Scholar 

  • McBratney, A., Field, D. J., & Koch, A. (2014). The dimensions of soil security. Geoderma, 213, 203–213. http://dx.doi.org/10.1016/j.geoderma.2013.08.013.

    Article  Google Scholar 

  • McBratney, A. B., Field, D. J., Morgan, C. L. S., & Jarrett, L. E. (2017). Soil security: A rationale. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 3–14). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_1.

    Chapter  Google Scholar 

  • McBratney, A. B., & Jarrett, L. E. (2017). Securitisation. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 437–441). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_40.

    Chapter  Google Scholar 

  • McCarl, B. A. (2015). Elaborations on climate adaptation in U.S. Agriculture. Choices 2nd Quarter, 30.

    Google Scholar 

  • McCarl, B. A. (2017). Economics, energy, climate change, and soil security. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 195–205). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_17.

    Chapter  Google Scholar 

  • Meehl, G. A., et al. (2007). In S. Solomon, D. Qin, M. Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. H. Miller (Eds.), Climate change 2007: The physical science basis, Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change (pp. 748–845). Cambridge: Cambridge University Press.

    Google Scholar 

  • Meena, M. D., Joshi, P. K., Jat, H. S., Chinchmalatpure, A. R., Narjary, B., Sheoran, P., & Sharma, D. K. (2016). Changes in biological and chemical properties of saline soil amended with municipal solid waste compost and chemical fertilizers in a mustard–pearl millet cropping system. Catena, 140, 1–8.

    Article  CAS  Google Scholar 

  • Meier, I. C., Finzi, A. C., & Phillips, R. P. (2017). Root exudates increase N availability by stimulating microbial turnover of fast-cycling N pools. Soil Biology and Biochemistry, 106, 119–128.

    Article  CAS  Google Scholar 

  • Mele, P. M. (2011). Soil biota, soil health and global change. In B. P. Singh et al. (Eds.), Soil health and climate change, Soil biology (Vol. 29). Berlin: Springer-Verlag. doi:10.1007/978-3-642-20256-8_8.

    Chapter  Google Scholar 

  • Meng, L., & Zhu, Y. G. (2011). Pyrene biodegradation in an industrial soil exposed to simulated rhizodeposition: How does it affect functional microbial abundance? Environmental Science & Technology, 45, 1579–1585.

    Article  CAS  Google Scholar 

  • Miki, T. (2012). Microbe-mediated plant–soil feedback and its roles in a changing world. Ecological Research, 27, 509–520. doi:10.1007/s11284-012-0937-5.

    Article  CAS  Google Scholar 

  • Minasny, B., Malone, B. P., McBratney, A. B., Angers, D. A., Arrouays, D., Chambers, A., Chaplot, V., Chen, Z.-S., Cheng, K., Das, B. S., Field, D. J., Gimona, A., Hedley, C. B., Hong, S. Y., Mandal, B., Marchant, B. P., Martin, M., McConkey, B. G., Mulder, V. L., O’Rourke, S., Richer-de-Forges, A. C., Odeh, I., Padarian, J., Paustian, K., Pan, G., Poggio, L., Savin, I., Stolbovoy, V., Stockmann, U., Sulaeman, Y., Tsui, C.-C., Vågen, T.-G., van Wesemael, B., & Winowiecki, L. (2017). Soil carbon 4 per mille. Geoderma, 292, 59–86.

    Article  Google Scholar 

  • Misra, A. K. (2014). Climate change and challenges of water and food security. International Journal of Sustainable Built Environment, 3(1), 153–165.

    Article  Google Scholar 

  • Mitton, F. M., Gonzalez, M., Pena, A., & Miglioranza, K. S. B. (2012). Effects of amendments on soil availability and phytoremediation potential of aged p,p′-DDT, p,p′-DDE and p,p′-DDD residues by willow plants (Salix sp.) Journal of Hazardous Materials, 203, 62–68.

    Article  PubMed  CAS  Google Scholar 

  • Mohammadi, M. F., Jalali, S. G., Kooch, Y., & Said-Pullicino, D. (2017). The effect of landform on soil microbial activity and biomass in a Hyrcanian oriental beech stand. Catena, 149(Part 1), 309–317.

    Article  CAS  Google Scholar 

  • Mommer, L., Kirkegaard, J., & van Ruijven, J. (2016). Root–root interactions: Towards a rhizosphere framework. Trends in Plant Science, 21(3), 209–217.

    Article  CAS  PubMed  Google Scholar 

  • Montiel-Rozas, M. M., Madejón, E., & Madejón, P. (2016). Effect of heavy metals and organic matter on root exudates (low molecular weight organic acids) of herbaceous species: An assessment in sand and soil conditions under different levels of contamination. Environmental Pollution, 216, 273–281.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, C. A., Obermeier, M. M., & Berg, G. (2016). Bioprospecting plant-associated microbiomes. Journal of Biotechnology, 235, 171–180.

    Article  CAS  Google Scholar 

  • Mueller, U. G., & Sachs, J. L. (2015). Engineering microbiomes to improve plant and animal health. Trends in Microbiology, 23, 606–617. doi:10.1016/j. tim.2015.07.009.

    Article  CAS  PubMed  Google Scholar 

  • Munroe, J. W., Soto, G., Filho, E. d. M. V., Fulthorpe, R., & Isaac, M. E. (2015). Soil microbial and nutrient properties in the rhizosphere of coffee under agroforestry management. Applied Soil Ecology, 93, 40–46.

    Article  Google Scholar 

  • Murphy, B. (2017). Testing the links between soil security, sustainable land management practices and land evaluation. In D. J. Field et al. (Eds.), Global soil security, progress in soil science (pp. 87–97). Cham, Switzerland: Springer. doi:10.1007/978-3-319-43394-3_8.

    Chapter  Google Scholar 

  • Nalam, V. J., & Nachappa, P. (2014). The role of roots in plant defense responses to aboveground herbivores. In A. Morte & A. Varma (Eds.), Root engineering, Soil biology (Vol. 40). Berlin: Springer-Verlag. doi:10.1007/978-3-642-54276-3_17.

    Chapter  Google Scholar 

  • Nannipieri, P., Ascher, J., Ceccherini, M. T., Landi, L., Pietramellara, G., Renella, G., & Valor, F. (2008). Effects of root exudates in microbial diversity and activity in rhizosphere soils. In C. S. Nautiyal & P. Dion (Eds.), Molecular mechanisms of plant and microbe coexistence, Soil biology (Vol. 15). Berlin: Springer-Verlag. doi:10.1007/978-3-540-75575-3.

    Google Scholar 

  • Neumann, G. (2007). Root exudates and nutrient cycling. In P. Marschner & Z. Rengel (Eds.), Soil biology, Nutrient cycling in terrestrial ecosystems (Vol. 10). Berlin: Springer-Verlag.

    Google Scholar 

  • Nguyen, T. X. T., Amyot, M., & Labrecque, M. (2017). Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere, 168, 131–138.

    Article  CAS  PubMed  Google Scholar 

  • Nietfeld, H., Prenzel, J., Helmisaari, H.-S., Polle, A., & Beese, F. (2017). Modeling of mineral nutrient uptake of spruce tree roots as affected by the ion dynamics in the rhizosphere: Upscaling of model results to field plot scale. Ecological Modelling, 345, 150–164.

    Article  CAS  Google Scholar 

  • Nogueira, V., Lopes, I., Rocha-Santos, T., Santos, A. L., Rasteiro, G. M., Antunes, F., Gonçalves, F., Soares, A. M. V. M., Cunha, A., Almeida, A., Gomes, N. N. C. M., & Pereira, R. (2012). Impact of organic and inorganic nanomaterials in the soil microbial community structure. Science of the Total Environment, 424, 344–350.

    Article  CAS  PubMed  Google Scholar 

  • Noori, M. S. S., & Saud, H. M. (2012). Potential plant growth promoting activity of Pseudomonas sp isolated from paddy soil in Malaysia as biocontrol agent. Plant Pathology and Microbiology, 3(2), 1–4.

    Google Scholar 

  • Ofek, M., Voronov-Goldman, M., Hadar, Y., & Minz, D. (2014). Host signature effect on plant root-associated microbiomes revealed through analyses of resident vs. active communities. Environmental Microbiology, 16, 2157–2167. doi:10.1111/1462-2920.12228.

    Article  CAS  PubMed  Google Scholar 

  • Otero, X. L., González-Guzman, A., Souza-Junior, V. S., Pérez-Alberti, A., & Macías, F. (2015). Soil processes and nutrient bioavailability in the rhizosphere of Bolax gummifera in a subantarctic environment (Martial Mountains, Ushuaia—Argentina). Catena, 133, 432–440.

    Article  CAS  Google Scholar 

  • Oyelami, A. O., & Semple, K. T. (2015). Impact of carbon nanomaterials on microbial activity in soil. Soil Biology and Biochemistry, 86, 172–180.

    Article  CAS  Google Scholar 

  • Palanques, A., Lopez, L., Guillén, J., Puig, P., & Masqué, P. (2017). Decline of trace metal pollution in the bottom sediments of the Barcelona City continental shelf (NW Mediterranean). Science of the Total Environment, 579, 755–767.

    Article  CAS  PubMed  Google Scholar 

  • Parelho, C., Rodrigues, A. S., Barreto, M. C., Ferreira, N. G. C., & Garcia, P. (2016). Assessing microbial activities in metal contaminated agricultural volcanic soils—An integrative approach. Ecotoxicology and Environmental Safety, 129, 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Park, S., Y-S, S., & Hegeman, A. D. (2014). Plant metabolomics for plant chemical responses to Belowground community change by climate change. Journal of Plant Biology, 57, 137–149. doi:10.1007/s12374-014-0110-5.

    Article  CAS  Google Scholar 

  • Partridge, T., Thomas, M., Harthorn, B. H., Pidgeon, N., Hasell, A., Stevenson, L., & Enders, C. (2017). Seeing futures now: Emergent US and UK views on shale development, climate change and energy systems. Global Environmental Change, 42, 1–12.

    Article  Google Scholar 

  • Pérez, I., Janssen, M. A., & Anderies, J. M. (2016). Food security in the face of climate change: Adaptive capacity of small-scale social-ecological systems to environmental variability. Global Environmental Change, 40, 82–91.

    Article  Google Scholar 

  • Perlatti, F., Ferreira, T. O., Sartor, L. R., & Otero, X. L. (2016). Copper biogeochemistry in response to Rhizosphere soil processes under four native plant species growing spontaneously in an abandoned mine site in NE Brazil. Water, Air, and Soil Pollution, 227, 142. doi:10.1007/s11270-016-2840-0.

    Article  CAS  Google Scholar 

  • Plouznikoff, K., Declerck, S., & Calonne-Salmon, M. (2016). Mitigating abiotic stresses in crop plants by arbuscular mycorrhizal fungi. In C. M. F. Vos & K. Kazan (Eds.), Belowground defence strategies in plants, signaling and communication in plants. Cham, Switzerland: Springer. doi:10.1007/978-3-319-42319-7_15.

    Google Scholar 

  • Prasanna, R., Kanchan, A., Kaur, S., Ramakrishnan, B., Ranjan, K., Singh, M. C., Hasan, M., Saxena, A. K., & Shivay, Y. S. (2016). Chrysanthemum growth gains from beneficial microbial interactions and fertility improvements in soil under protected cultivation. Horticultural Plant Journal. (in press).

    Google Scholar 

  • Rajkumar, M., Prasad, M. N. V., Swaminathan, S., & Freitas, H. (2013). Climate change driven plant–metal–microbe interactions. Environment International, 53, 74–86.

    Article  CAS  PubMed  Google Scholar 

  • Rao, Z., Guo, W., Cao, J., Shi, F., Jiang, H., & Li, C. (2017). Relationship between the stable carbon isotopic composition of modern plants and surface soils and climate: A global review. Earth-Science Reviews, 165, 110–119.

    Article  CAS  Google Scholar 

  • Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M. I., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological Research, 183, 26–41.

    Article  CAS  PubMed  Google Scholar 

  • Rezanezhad, F., Couture, R.-M., Kovac, R., O’Connell, D., & Van Cappellen, P. (2014). Water table fluctuations and soil biogeochemistry: An experimental approach using an automated soil column system. Journal of Hydrology, 509, 245–256.

    Article  CAS  Google Scholar 

  • Rigolot, C., de Voil, P., Douxchamps, S., Prestwidge, D., Van Wijk, M., Thornton, P. K., Rodriguez, D., Henderson, B., Medina, D., & Herrero, M. (2017). Interactions between intervention packages, climatic risk, climate change and food security in mixed crop–livestock systems in Burkina Faso. Agricultural Systems, 151, 217–224.

    Article  Google Scholar 

  • Rugova, A., Puschenreiter, M., Koellensperger, G., & Hann, S. (2017). Elucidating rhizosphere processes by mass spectrometry: A review. Analytica Chimica Acta. doi:10.1016/j.aca.2016.12.044.

  • Sabannavar, S. J., & Lakshman, H. C. (2009). Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World Journal of Agricultural Sciences, 5(4), 470–479.

    CAS  Google Scholar 

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., & Guo, W. (2017). Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70–78.

    Article  CAS  Google Scholar 

  • Sahoo, R. K., Ansari, M. W., Tuteja, R., & Tuteja, N. (2015). Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere. Chemosphere, 119, 1040–1047.

    Article  CAS  PubMed  Google Scholar 

  • Salawitch, R. J., Canty, T. P., Hope, A. P., Tribett, W. R., & Bennett, B. F. (2017). Paris climate agreement: Beacon of hope. Cham, Switzerland: Springer. doi:10.1007/978-3-319-46939-3.

    Book  Google Scholar 

  • Saleem, M., Pervaiz, Z. H., & Traw, M. B. (2015). Theories, mechanisms and patterns of microbiome species coexistence in an era of climate change. In M. Saleem et al. (Eds.), Microbiome community ecology, springer briefs in ecology. Cham, Switzerland: Springer. doi:10.1007/978-3-319-11665-5_2.

    Google Scholar 

  • Sammarco, M., Tse, R., Pau, G., & Marfia, G. (2017). Using geosocial search for urban air pollution monitoring. Pervasive and Mobile Computing, 35, 15–31.

    Article  Google Scholar 

  • San Emeterio, L., Múgica, L., Ugarte, M. D., Goicoa, T., & Canals, R. M. (2016). Sustainability of traditional pastoral fires in highlands under global change: Effects on soil function and nutrient cycling. Agriculture, Ecosystems & Environment, 235, 155–163.

    Article  Google Scholar 

  • Schimel, J., Balser, T. C., & Wallenstein, M. (2007). Microbial stress response physiology and its implications for ecosystem function. Ecology, 88, 1386–1394.

    Article  PubMed  Google Scholar 

  • Schlich, K., Beule, L., & Hund-Rinke, K. (2016). Single versus repeated applications of CuO and Ag nanomaterials and their effect on soil microflora. Environmental Pollution, 215, 322–330.

    Article  CAS  PubMed  Google Scholar 

  • Schlich, K., & Hund-Rinke, K. (2015). Influence of soil properties on the effect of silver nanomaterials on microbial activity in five soils. Environmental Pollution, 196, 321–330.

    Article  CAS  PubMed  Google Scholar 

  • Seifert, C. A., & Lobell, D. B. (2015). Response of double cropping suitability to climate change in the United States. Environmental Research Letters, 10, 2.

    Article  Google Scholar 

  • Shade, A., Peter, H., Allison, S. D., et al. (2012). Fundamentals of microbial community resistance and resilience. Frontiers of Aquatic Microbiology, 3, 417.

    Google Scholar 

  • Shan, Q., Yu, Y., Yu, J., & Zhang, J. (2008). Soil enzyme activities and their indication for fertility of urban forest soil. Frontiers of Environmental Science & Engineering China, 2(2), 218–223. doi:10.1007/s11783-008-0037-5.

    Article  Google Scholar 

  • Shcherbakova, E. N., Shcherbakov, A. V., Andronov, E. E., Gonchar, L. N., Kalenskaya, S. M., & Chebotar, V. K. (2017). Combined pre-seed treatment with microbial inoculants and Mo nanoparticles changes composition of root exudates and rhizosphere microbiome structure of chickpea (Cicer arietinum L.) plants. Symbiosis. doi:10.1007/s13199-016-0472-1.

  • Shi, J., Li, J., Zhang, D. D., Zheng, J., Shi, S., Ge, Q., Lee, H. F., Zhao, Y., Zhang, J., & Lu, H. (2017). Two centuries of April-July temperature change in southeastern China and its influence on grain productivity. Science Bulletin, 62(1), 40–45.

    Article  Google Scholar 

  • Short, F. T., Kosten, S., Morgan, P. A., Malone, S., & Moore, G. E. (2016). Impacts of climate change on submerged and emergent wetland plants. Aquatic Botany, 135, 3–17.

    Article  Google Scholar 

  • Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: Terrestrial feedbacks and mitigation options. Nature Reviews. Microbiology, 8, 779–790.

    Article  CAS  PubMed  Google Scholar 

  • Singh, G., & Mukerji, K. G. (2006). Root exudates as determinant of rhizospheric microbial biodiversity. In K. G. Mukerji, C. Manoharachary, & J. Singh (Eds.), Soil biology, Microbial activity in the rhizosphere (Vol. 7). Berlin: Springer-Verlag.

    Google Scholar 

  • Singh, N., Srivastava, S., Rathaur, S., & Singh, N. (2016). Assessing the bioremediation potential of arsenic tolerant bacterial strains in rice rhizosphere interface. Journal of Environmental Sciences, 48, 112–119.

    Article  Google Scholar 

  • Skarpaas, O., Meineri, E., Bargmann, T., Pötsch, C., Töpper, J., & Vandvik, V. (2016). Biomass partitioning in grassland plants along independent gradients in temperature and precipitation. Perspectives in Plant Ecology, Evolution and Systematics, 19, 1–11.

    Article  Google Scholar 

  • Smith, L., Inman, A., Lai, X., Zhang, H., Fanqiao, M., Jianbin, Z., Burke, S., Rahn, C., Siciliano, G., Haygarth, P. M., Bellarby, J., & Surridge, B. (2017). Mitigation of diffuse water pollution from agriculture in England and China, and the scope for policy transfer. Land Use Policy, 61, 208–219.

    Article  Google Scholar 

  • Sofi, J. A., Lone, A. H., Ganie, M. A., Dar, N. A., Bhat, S. A., Mukhtar, M., Dar, M. A., & Ramzan, S. (2016). Soil microbiological activity and carbon dynamics in the current climate change scenarios: A review. Pedosphere, 26(5), 577–591.

    Article  Google Scholar 

  • Solanki, A. S., Kumar, V., & Sharma, S. (2011). AM fungi, A. chroococcum, yield, nutrient uptake and economics of Chlorophytum borivillianum in Indian arid region. Journal of Agricultural Technology, 7(4), 983–991.

    Google Scholar 

  • Strickland, M. S., Wickings, K., & Bradford, M. A. (2012). The fate of glucose, a low molecular weight compound of root exudates, in the belowground food web of forests and pastures. Soil Biology and Biochemistry, 49, 23–29.

    Article  CAS  Google Scholar 

  • Su, J.-Q., Xia, Y., Yao, H.-Y., Li, Y.-Y., An, X.-L., Singh, B. K., Zhang, T., & Zhu, Y.-G. (2017). Metagenomic assembly unravel microbial response to redox fluctuation in acid sulfate soil. Soil Biology and Biochemistry, 105, 244–252.

    Article  CAS  Google Scholar 

  • Sun, J., Liu, J., Yu, M., Wang, C., Sun, Y., Zhang, A., Wang, T., Lei, Z., & Jiang, G. (2013). In vivo metabolism of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) in young whole pumpkin plant. Environmental Science & Technology, 47, 3701–3707.

    Article  CAS  Google Scholar 

  • Swamy, M. K., Akhtar, M. S., & Sinniah, U. R. (2016). Root exudates and their molecular interactions with rhizospheric microbes. In K. R. Hakeem & M. S. Akhtar (Eds.), Plant, soil and microbes. Cham, Switzerland: Springer. doi:10.1007/978-3-319-29573-2_4.

    Google Scholar 

  • Tan, M. L., Ibrahim, A., Yusop, Z., Chua, V. P., & Chan, N. W. (2017). Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River basin, Malaysia. Atmospheric Research, 189, 1–10.

    Article  Google Scholar 

  • Taniguchi, M., Masuhara, N. & Burnett, K. (2015). Water, energy, and food security in the Asia Pacific region. Journal of Hydrology: Regional Studies. (in press).

    Google Scholar 

  • Tao, F., Feng, Z., Tang, H., Chen, Y., & Kobayashi, K. (2017). Effects of climate change, CO2 and O3 on wheat productivity in eastern China, singly and in combination. Atmospheric Environment, 153, 182–193.

    Article  CAS  Google Scholar 

  • Tautges, N. E., Sullivan, T. S., Reardon, C. L., & Burke, I. C. (2016). Soil microbial diversity and activity linked to crop yield and quality in a dry land organic wheat production system. Applied Soil Ecology, 108, 258–268.

    Article  Google Scholar 

  • Tiwari, B., Sellamuthu, B., Ouarda, Y., Drogui, P., Tyagi, R. D., & Buelna, G. (2017). Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresource Technology, 224, 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Todd-Brown, K. E. O., Hopkins, F. M., Kivlin, S. N., Talbot, J. M., & Allison, S. D. (2012). A framework for representing microbial decomposition in coupled climate models. Biogeochemistry, 109, 19–33. doi:10.1007/s10533-011-9635-6.

    Article  Google Scholar 

  • Tong, J., Miaowen, C., Juhui, J., Jinxian, L., & Baofeng, C. (2017). Endophytic fungi and soil microbial community characteristics over different years of phytoremediation in a copper tailings dam of Shanxi, China. Science of the Total Environment, 574, 881–888.

    Article  CAS  PubMed  Google Scholar 

  • Touceda-González, M., Álvarez-López, V., Prieto-Fernández, Á., Rodríguez-Garrido, B., Trasar-Cepeda, C., Mench, M., Puschenreiter, M., Quintela-Sabarís, C., Macías-García, F., & Kidd, P. S. (2017). Aided phytostabilisation reduces metal toxicity, improves soil fertility and enhances microbial activity in cu-rich mine tailings. Journal of Environmental Management, 186(Part 2), 301–313.

    Article  PubMed  CAS  Google Scholar 

  • Tripathi, V., Fraceto, L. F., & Abhilash, P. C. (2015). Sustainable clean-up technologies for soils contaminated with multiple pollutants: Plant-microbe-pollutant and climate nexus. Ecological Engineering, 82, 330–335.

    Article  Google Scholar 

  • Turrini, A., Sbrana, C., & Giovannetti, M. (2015). Belowground environmental effects of transgenic crops: A soil microbial perspective. Research in Microbiology, 166(3), 121–131.

    Article  PubMed  Google Scholar 

  • Uitto, J. I., Puri, J., & van den Berg, R. D. (2017). Evaluating climate change action for sustainable development. Cham, Switzerland: Springer. doi:10.1007/978-3-319-43702-6.

    Book  Google Scholar 

  • van Dam, N. M., & Bouwmeester, H. J. (2016). Metabolomics in the Rhizosphere: Tapping into Belowground chemical communication. Trends in Plant Science, 21(3), 256–265.

    Article  PubMed  CAS  Google Scholar 

  • van Loon, L. C. (2016). The intelligent behavior of plants. Trends in Plant Science, 21(4), 286–294.

    Article  PubMed  CAS  Google Scholar 

  • Verbon, E. H., & Liberman, L. M. (2016). Beneficial microbes affect endogenous mechanisms controlling root development. Trends in Plant Science, 21(3), 218–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vergani, L., Mapelli, F., Zanardini, E., Terzaghi, E., Di Guardo, A., Morosini, C., Raspa, G., & Borin, S. (2017). Phyto-rhizoremediation of polychlorinated biphenyl contaminated soils: An outlook onplant-microbe beneficial interactions. Science of the Total Environment, 575, 1395–1406.

    Article  CAS  PubMed  Google Scholar 

  • Vos, C. M. F., & Kazan, K. (2016). Belowground defence strategies in plants, Signaling and communication in plants series. Cham, Switzerland: Springer. doi:10.1007/978-3-319-42319-7.

    Book  Google Scholar 

  • Wang, X., Ciais, P., Li, L., Ruget, F., Vuichard, N., Viovy, N., Zhou, F., Chang, J., Wu, X., Zhao, H., & Piao, S. (2017a). Management outweighs climate change on affecting length of rice growing period for early rice and single rice in China during 1991–2012. Agricultural and Forest Meteorology, 233, 1–11.

    Article  CAS  Google Scholar 

  • Wang, M., Faber, J. H., & Chen, W. (2017b). Application of stress index in evaluating toxicological response of soil microbial community to contaminants in soils. Ecological Indicators, 75, 118–125.

    Article  CAS  Google Scholar 

  • Wang, Y., Hu, N., Ge, T., Kuzyakov, Y., Z-L Wang, Z., Li, Z., Tang, Y., Chen, C. W., & Lou, Y. (2017c). Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment. Applied Soil Ecology, 111, 65–72.

    Article  Google Scholar 

  • Wang, H., Nie, Y., Butterly, C. R., Wang, L., Chen, Q., Tian, W., Song, B., Xi, Y., & Wang, Y. (2017d). Fertilization alters microbial community composition and functional patterns by changing the chemical nature of soil organic carbon: A field study in a Halosol. Geoderma, 292, 17–24.

    Article  CAS  Google Scholar 

  • Wang, Y., Gong, J.-R., Liu, M., Luo, Q., Xu, S., Pan, Y., & Zhai, Z. (2015). Effects of land use and precipitation on above- and below-ground litter decomposition in a semi-arid temperate steppe in Inner Mongolia, China. Applied Soil Ecology, 96, 183–191.

    Article  Google Scholar 

  • Winarso, S., Pandutama, M. H., & Purwanto, L. D. (2016). Effectively of humic substance extracted from palm oil compost as liquid fertilizer and heavy metal bioremediation. Agriculture and Agricultural Science Procedia, 9, 146–157.

    Article  Google Scholar 

  • Wu, J., Franzén, D., & Malmström, M. E. (2016). Nutrient flows following changes in source strengths, land use and climate in an urban catchment, Råcksta Träsk in Stockholm, Sweden. Ecological Modelling, 338, 69–77.

    Article  CAS  Google Scholar 

  • Wu, J., & Malmström, M. E. (2015). Nutrient loadings from urban catchments under climate change scenarios: Case studies in Stockholm, Sweden. Science of the Total Environment, 518–519, 393–406.

    Article  PubMed  CAS  Google Scholar 

  • Wu, M., Li, W., Dick, W. A., Ye, X., Chen, K., Kost, D., & Chen, L. (2017). Bioremediation of hydrocarbon degradation in a petroleum-contaminated soil and microbial population and activity determination. Chemosphere, 169, 124–130.

    Article  CAS  PubMed  Google Scholar 

  • Wu, Z. T., Dijkstra, P., Koch, G. W., Peñuelas, J., & Hungate, B. A. (2011). Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17, 927–942.

    Article  Google Scholar 

  • Xiao, W., Feng, S., Liu, Z., Su, Y., Zhang, Y., & He, X. (2017). Interactions of soil particulate organic matter chemistry and microbial community composition mediating carbon mineralization in karst soils. Soil Biology and Biochemistry, 107, 85–93.

    Article  CAS  Google Scholar 

  • Xu, G., Singh, S. K., Reddy, V. R., Barnaby, J. Y., Sicher, R. C., & Li, T. (2016). Soybean grown under elevated CO2 benefits more under low temperature than high temperature stress: Varying response of photosynthetic limitations, leaf metabolites, growth, and seed yield. Journal of Plant Physiology, 205, 20–32.

    Article  CAS  PubMed  Google Scholar 

  • Xu, W., Wang, Z., & Wu, F. (2015). Companion cropping with wheat increases resistance to Fusarium wilt in watermelon and the roles of root exudates in watermelon root growth. Physiological and Molecular Plant Pathology, 90, 12–20.

    Article  Google Scholar 

  • Xue, S., Yang, X., Liu, G., Gai, L., Zhang, C., Ritsema, C. J., & Geissen, V. (2017). Effects of elevated CO2 and drought on the microbial biomass and enzymatic activities in the rhizospheres of two grass species in Chinese loess soil. Geoderma, 286, 25–34.

    Article  CAS  Google Scholar 

  • Yadav, B. K., Akhtar, M. S., & Panwar, J. (2015). Rhizospheric plant-microbe interactions: Key factors to soil fertility and plant nutrition. In N. K. Arora (Ed.), Plant microbes Symbiosis: Applied facets. New Delhi, India: Springer. doi:10.1007/978-81-322-2068-8_6.

    Google Scholar 

  • Yang, L., Zhang, Y., & Li, F. (2012). Soil enzyme activities and soil fertility dynamics. In A. K. Srivastava (Ed.), Advances in citrus nutrition. New York: Springer. doi:10.1007/978-94-007-4171-3_11.

    Google Scholar 

  • Yazdani, M., Bahmanyar, M. A., Pirdashti, H., & Esmaili, M. A. (2009). Effect of phosphate solubilization microorganisms (PSM) and plant growth promoting rhizobacteria (PGPR) on yield and yield components of corn (Zea mays L.) Proceedings of World Academy of Science, Engineering and Technology, 37, 90–92.

    Google Scholar 

  • Yuan, Z., Liu, H., Han, J., Sun, J., Wu, X., & Yao, J. (2017). Monitoring soil microbial activities in different cropping systems using combined methods. Pedosphere, 27(1), 138–146.

    Article  Google Scholar 

  • Zhang, Y., Dong, S., Gao, Q., Liu, S., Zhou, H., Ganjurjav, H., & Wang, X. (2016a). Climate change and human activities altered the diversity and composition of soil microbial community in alpine grasslands of the Qinghai-Tibetan Plateau. Science of the Total Environment, 562, 353–363.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Mora, P., Dai, J., Chen, X., Giusti-Miller, S., Ruiz-Camacho, N., Velasquez, E., & Lavelle, P. (2016b). Earthworm and organic amendment effects on microbial activities and metal availability in a contaminated soil from China. Applied Soil Ecology, 104, 54–66.

    Article  Google Scholar 

  • Zhang, H., Huang, B., Dong, L., Hu, W., Akhtar, M. S., & Qu, M. (2017a). Accumulation, sources and health risks of trace metals in elevated geochemical background soils used for greenhouse vegetable production in southwestern China. Ecotoxicology and Environmental Safety, 137, 233–239.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Li, M., & Zheng, G. (2017b). Effect of stand age on soil microbial community structure in wolfberry (Lycium barbarum L.) fields. Acta Ecologica Sinica, 37(1), 10–17.

    Article  Google Scholar 

  • Zhang, Q., Yang, J., Koide, R. T., Li, T., Yang, H., & Chu, J. (2017c). A meta-analysis of soil microbial biomass levels from established tree plantations over various land uses, climates and plant communities. Catena, 150, 256–260.

    Article  CAS  Google Scholar 

  • Zhang, Z., Yuan, Y., Zhao, W., He, H., Li, D., He, W., Liu, Q., & Yin, H. (2017d). Seasonal variations in the soil amino acid pool and flux following the conversion of a natural forest to a pine plantation on the eastern Tibetan Plateau, China. Soil Biology and Biochemistry, 105, 1–11.

    Article  CAS  Google Scholar 

  • Zhang, P., Zhang, J., & Chen, M. (2017e). Economic impacts of climate change on agriculture: The importance of additional climatic variables other than temperature and precipitation. Journal of Environmental Economics and Management, 83, 8–31.

    Article  Google Scholar 

  • Zhang, N., Wang, D., Liu, Y., Li, S., Shen, Q., & Zhang, R. (2014). Effects of different plant root exudates and their organic acid components on chemotaxis, biofilm formation and colonization by beneficial rhizosphere-associated bacterial strains. Plant and Soil, 374, 689–700. doi:10.1007/s11104-013-1915-6.

    Article  CAS  Google Scholar 

  • Zhang, X., & Vesselinov, V. V. (2017). Integrated modeling approach for optimal management of water, energy and food security nexus. Advances in Water Resources, 101, 1–10.

    Article  CAS  Google Scholar 

  • Zhu, S., Huang, X., Ho, S.-H., Wang, L., & Yang, J. (2017). Effect of plant species compositions on performance of lab-scale constructed wetland through investigating photosynthesis and microbial communities. Bioresource Technology, 229, 196–203.

    Article  CAS  PubMed  Google Scholar 

  • Zimmer, C. (2010). The microbe factor and its role in our climate future. Retrieved December 15, 2015, from http://e360.yale.edu/feature/the_microbe_factor_and_its_role_in_our_climate_future/2279/.

  • Zuverza-Mena, N., Martínez-Fernandez, D., Du, W., Hernandez-Viezcas, J. A., Bonilla-Bird, N., Lopez-Moreno, M. L., Komarek, M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2017). Exposure of engineered nanomaterials to plants: Insights into the physiological and biochemical responses: A review. Plant Physiology and Biochemistry, 110, 236–264.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the outstanding contribution of the research teams from the Science and Technology Development Fund (STDF), Egypt, and the Federal Ministry of Education and Research of the Federal Republic of Germany (BMBF/DLR), (Project ID 5310) for their help. Great support from this German Egyptian Research Fund (GERF) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan El-Ramady .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alshaal, T. et al. (2017). The Rhizosphere and Plant Nutrition Under Climate Change. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_11

Download citation

Publish with us

Policies and ethics