Skip to main content

Actions of Biological Trace Elements in Plant Abiotic Stress Tolerance

  • Chapter
  • First Online:
Essential Plant Nutrients

Abstract

With the increase of global population, the demand for food crops, oil, fiber and other by-product yielding crops is increasing. In contrast to this increasing demand, abiotic stresses hinder the productivity of plants. Abiotic stresses sometimes reduce more than half of the crop yields. To attain global food security, understanding of plant responses to abiotic stresses is crucial because this is the prerequisite for developing approaches/tools for improving plant stress tolerance. Trace elements are nutrients required in small quantities to facilitate a range of physiological functions. These elements stimulate growth but are not essential. Some are essential only for certain plant species or required under a given condition. Trace elements not only improve plant physiological processes and growth but play roles in improving plant stress tolerance. However, the actual physiological functions of trace elements in conferring abiotic stress tolerance are still under study. This chapter focuses on the roles of trace elements emphasizing especially the recent advances on the actions of biological trace elements in plant abiotic stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen, D. J., & Ort, D. R. (2001). Impacts of chilling temperatures on photosynthesis in warm-climate plants. Trends in plant science, 6(1), 36–42.

    Google Scholar 

  • Abbas, S. M. (2012). Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. Journal of Stress Physiology & Biochemistry, 8, 268–286.

    Google Scholar 

  • Abdel-Motagally, F. M. F., & El-Zohri, M. (2016). Improvement of wheat yield grown under drought stress by boron foliar application at different growth stages. Journal of the Saudi Society of Agricultural Sciences. doi:10.1016/j.jssas.2016.03.005.

  • Aghaee, A., Moradi, F., Zare-maivan, H., Zarinkamar, F., Irandoost, H. P., & Sharifi, P. (2011). Physiological responses of two rice (Oryza sativa L.) genotypes to chilling stress at seedling stage. African Journal of Biotechnology, 10, 7617–7621.

    Google Scholar 

  • Ahmad, F., Rahmatullah, Aziz, T., Maqsood, M. A., Tahir, M. A., & Kanwal, S. (2007). Effect of silicon application on wheat (Triticum aestivum L.) growth under water deficiency stress. Emirates Journal of Food and Agriculture, 19, 17.

    Article  Google Scholar 

  • Ahmad, P., Jamsheed, S., & Hameed, A. (2014). Drought stress induced oxidative damage and antioxidants in plants. New York: Elsevier.

    Book  Google Scholar 

  • Ahmed, M., Asif, M., & Goyal, A. (2012). Silicon the non-essential beneficial plant nutrient to enhanced drought tolerance in wheat. In A. Goyal (Ed.), Crop plant (pp. 31–48). Rijeka: InTech.

    Google Scholar 

  • Ahmed, M., Hassen, F., Qadeer, U., & Aslam, M. A. (2011). Silicon application and drought tolerance mechanism of sorghum. African Journal of Agricultural Research, 6, 594–607.

    Google Scholar 

  • Aissa, N., Malagoli, M., & Radhouane, L. (2016). An approach to alleviate the impact of drought stress with selenium amendment. Iranian Journal of Science and Technology, Transactions A: Science. (in press).

    Google Scholar 

  • Ajithkumar, I. P., & Panneerselvam, R. (2013). Osmolyte accumulation, photosynthetic pigment and growth of Setaria italica (L) P. Beauv. under drought stress. Asian Pacific Journal of Reproduction, 2, 220–224.

    Article  Google Scholar 

  • Akladious, S. A. (2012). Influence of different soaking times with selenium on growth, metabolic activities of wheat seedlings under low temperature stress. African Journal of Biotechnology, 11, 14792–14804.

    CAS  Google Scholar 

  • Akman, Z. (2009). Comparison of high temperature tolerance in maize, rice and sorghum seeds by plant growth regulators. Journal of Animal and Veterinary Advances, 8, 358–361.

    CAS  Google Scholar 

  • Aktaş, H., Abak, K., Öztürk, L., & Çakmak, I. (2006). The effect of zinc on growth and shoot concentrations of sodium and potassium in pepper plants under salinity stress. Turkish Journal of Agriculture and Forestry, 30, 407–412.

    Google Scholar 

  • Allakhverdiev, S. I., Kreslavski, V. D., Klimov, V. V., Los, D. A., Carpentier, R., & Mohanty, P. (2008). Heat stress: An overview of molecular responses in photosynthesis. Photosynthesis Research, 98, 541–550.

    Article  CAS  PubMed  Google Scholar 

  • Amirjani, M. R. (2011). Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. International Journal of Botany, 7, 73–81.

    Article  CAS  Google Scholar 

  • Andaya, V. C., & Mackill, D. J. (2003). QTLs conferring cold tolerance at the booting stage of rice using recombinant inbred lines from a japonica × indica cross. Theoretical and Applied Genetics, 106(6), 1084–1090.

    Article  CAS  PubMed  Google Scholar 

  • Angadi, S. V., Cutforth, H. W., & McConkey, B. G. (2000) Seeding management to reduce temperature stress in Brassica species. Saskatchewan Soils and Crops Proceedings.

    Google Scholar 

  • Apel, K., & Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress and signal transduction. Annual Review of Plant Biology, 55, 373–399.

    Article  CAS  PubMed  Google Scholar 

  • Arazi, T., Sunkar, R., Kaplan, B., & Fromm, H. (1999). A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. The Plant Journal, 20, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Arbona, V., Hossain, Z., López-Climent, M. F., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2008). Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum, 132, 452–466.

    Article  CAS  PubMed  Google Scholar 

  • Aroca, R., Vernieri, P., Irigoyen, J. J., Sánchez-díaz, M., Tognoni, F., & Pardossi, A. (2003). Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling induced water stress. Plant Science, 165, 671–679.

    Article  CAS  Google Scholar 

  • Arya, S. K., & Roy, B. K. (2011). Manganese induced changes in growth, chlorophyll content and antioxidants activity in seedlings of broad bean (Vicia faba L.) Journal of Environmental Biology, 32, 707–711.

    CAS  PubMed  Google Scholar 

  • Ashraf, M., Afzal, R. M., Ahmed, R., Mujeeb, F., Sarwar, A., & Ali, L. (2010). Alleviation of detrimental effects of NaCl by silicon nutrition in salt-sensitive and salt-tolerant genotypes of sugarcane (Saccharum officinarum L.) Plant and Soil, 326, 381–391.

    Article  CAS  Google Scholar 

  • Ashraf, M., & Harris, P. J. C. (2013). Photosynthesis under stressful environments: An overview. Photosynthetica, 51, 163–190.

    Article  CAS  Google Scholar 

  • Azooz, M. M., Abou-Elhamd, M. F., & Al-Fredan, M. A. (2012). Biphasic effect of copper on growth, proline, lipid peroxidation and antioxidant enzyme activities of wheat (Triticum aestivum cv. Hasaawi) at early growing stage. Australian Journal of Crop Science, 6, 688–694.

    CAS  Google Scholar 

  • Bailey-Serres, J., & Colmer, T. D. (2014). Plant tolerance of flooding stress–recent advances. Plant, Cell & Environment, 37, 2211–2215.

    Google Scholar 

  • Banerjee, S., Dey, N., & Adak, M. K. (2015). Assessment of some biomarkers under submergence stress in some rice cultivars varying in responses. American Journal of Plant Sciences, 6, 84–94.

    Article  CAS  Google Scholar 

  • Barnabás, B., Jager, K., & Feher, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell & Environment, 31, 11–38.

    Google Scholar 

  • Barta, C., Ka’lai, T., Hideg, K., Vass, I., & Hideg, E. (2004). Differences in the ROS-generating efficacy of various ultraviolet wavelengths in detached spinach leaves. Functional Plant Biology, 31, 23–28.

    Article  CAS  Google Scholar 

  • Bartling, D., Radzio, R., Steiner, U., & Weiler, E. W. (1993). A glutathione-S transferase with glutathione-peroxidase-activity from Arabidopsis thaliana-molecular cloning and functional characterization. European Journal of Biochemistry, 216, 579–586.

    Article  CAS  PubMed  Google Scholar 

  • Biedermann, S., Mooney, S., & Hellmann, H. (2011). Recognition and repair pathways of damaged DNA in higher plants. In C. Chen (Ed.), Selected topics in DNA repair (pp. 201–236). Rijeka: InTech.

    Google Scholar 

  • Biswas, D. K., & Jiang, G. M. (2011). Differential drought induced modulation of ozone tolerance in winter wheat species. Journal of Experimental Botany, 62, 4153–4162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biswas, D. K., Xu, H., Li, Y. G., Liu, M. Z., & Chen, Y. H. (2008). Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. Journal of Experimental Botany, 59, 951–963.

    Article  CAS  PubMed  Google Scholar 

  • Black, V. J., Black, C. R., Roberts, J. A., & Stewart, C. A. (2000). Impact of ozone on the reproductive development of plants. The New Phytologist, 147, 421–447.

    Article  CAS  Google Scholar 

  • Blaha, G., Stelzl, U., Spahn, C. M. T., Agrawal, R. K., Frank, J., & Nierhaus, K. H. (2000). Preparation of functional ribosomal complexes and effect of buffer conditions on tRNA positions observed by cryoelectron microscopy. Methods in Enzymology, 317, 292–306.

    Article  CAS  PubMed  Google Scholar 

  • Blevins, D. G., & Lukaszewski, K. M. (1994). Proposed physiologic functions of boron in plants pertinent to animal and human metabolism. Environmental Health Perspectives, 7, 31–33.

    Article  Google Scholar 

  • Blokhina, O., & Fagerstedt, K. V. (2010). Reactive oxygen species and nitric oxide in plant mitochondria: Origin and redundant regulatory systems. Physiologia Plantarum, 138, 447–462.

    Article  CAS  PubMed  Google Scholar 

  • Bordi, A. (2010). The influence of salt stress on seed germination, growth and yield of canola cultivars. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 38, 128–133.

    Google Scholar 

  • Brosche, M., Merilo, E., Mayer, F., Pechter, P., & Puzorjova, I. (2010). Natural variation in ozone sensitivity among Arabidopsis thaliana accessions and its relation to stomatal conductance. Plant, Cell & Environment, 33, 914–925.

    Article  CAS  Google Scholar 

  • Budak, H., Kantar, M., & Yucebilgili Kurtoglu, K. (2013). Drought tolerance in modern and wild wheat. Scientific World Journal. doi:10.1155/2013/548246.

  • Buriro, M., Oad, F. C., Keerio, M. I., Tunio, S., Gandahi, A. W., Hassan, S. W. U., & Oad, S. M. (2011). Wheat seed germination under the influence of temperature regimes. Sarhad Journal of Agriculture, 27, 539–543.

    Google Scholar 

  • Bybordi, A. (2012). Effect of ascorbic acid and silicium on photosynthesis, antioxidant enzyme activity, and fatty acid contents in canola exposure to salt stress. Journal of Integrative Agriculture, 11, 1610–1620.

    Article  CAS  Google Scholar 

  • Calviñoa, P. A., Sadrasc, V. O., & Andradeb, F. H. (2003). Development, growth and yield of late-sown soybean in the southern pampas. European Journal of Agronomy, 19, 265–275.

    Article  Google Scholar 

  • Camejo, D., Rodríguez, P., Morales, M. A., Dell’amico, J. M., Torrecillas, A., & Alarcon, J. J. (2005). High temperature effects on photosynthetic activity of ´ two tomato cultivars with different heat susceptibility. Journal of Plant Physiology, 162, 281–289.

    Article  CAS  PubMed  Google Scholar 

  • Cartes, P., Jara, A. A., Pinilla, L., Rosas, A., & Mora, M. L. (2010). Selenium improves the antioxidant ability against aluminium-induced oxidative stress in rye grass roots. The Annals of Applied Biology, 156, 297–307.

    Article  CAS  Google Scholar 

  • Chen, M., Chen, Q. J., Niu, X. G., Zhang, R., Lin, H. Q., CY, X., Wang, X. C., Wang, G. Y., & Chen, J. (2007). Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant, Soil and Environment, 53(11), 490–498.

    CAS  Google Scholar 

  • Cheng, L., Zou, Y., Ding, S., Zhang, J., Yu, X., Cao, J., & Lu, G. (2009). Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. Journal of Integrative Plant Biology, 51, 489–499.

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy, V., Zhu, J., & Zhu, J. K. (2007). Cold stress regulation of gene expression in plants. Trends in Plant Science, 12, 444–451.

    Article  CAS  PubMed  Google Scholar 

  • Chu, I., Yao, X., & Zhang, Z. (2010). Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research, 136, 355–363.

    Article  CAS  PubMed  Google Scholar 

  • Ciscar, J. C. (2012). The impacts of climate change in Europe (the PESETA research project). Climatic Change, 112, 1–6.

    Article  Google Scholar 

  • Cole, P., & McCloud, P. (1985). Salinity and climatic effects on the yields of citrus. Australian Journal of Experimental Agriculture, 25, 711–717.

    Article  Google Scholar 

  • Condon, A. G., Richards, R. A., Rebetzke, G. J., & Farquhar, G. D. (2004). Breeding for high water-use efficiency. Journal of Experimental Botany, 55, 2447–2460.

    Article  CAS  PubMed  Google Scholar 

  • Costa, H., Gallego, S. M., & Tomaro, M. L. (2002). Effects of UV-B radiation on antioxidant defense system in sunflower cotyledons. Plant Science, 162(6), 939–945.

    Article  CAS  Google Scholar 

  • Cramer, G. R., & Nowak, R. S. (1992). Supplemental manganese improves the relative growth, net assimilation and photosynthetic rates of salt-stressed barley. Physiologia Plantarum, 84, 600–605.

    Article  CAS  Google Scholar 

  • Cvikrová, M., Gemperlová, L., Martincová, O., & Vanková, R. (2013). Effect of drought and combined drought and heat stress on polyamine metabolism in proline-over-producing tobacco plants. Plant Physiology and Biochemistry, 73, 7–15.

    Google Scholar 

  • Dai, Q., Yan, B., Huang, S., Liu, X., & Peng, S. (1997). Response of oxidative stress defense system in rice (Oryza Sativa) leaves with supplemental UV-B radiation. Physiologia Plantarum, 101, 301–308.

    Article  CAS  Google Scholar 

  • Damanik, R. I., Maziah, M., Ismail, M. R., Ahmad, S., & Zain, A. M. (2010). Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition. Acta Physiologiae Plantarum, 32, 739–747.

    Article  CAS  Google Scholar 

  • Dantas, B. F., De Sa Ribeiro, L., & Aragao, C. A. (2007). Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Revista Brasileira de Sementes, 29, 106–110.

    Article  Google Scholar 

  • Datnoff, L. E., Synder, G. H., & Korndörfer, G. H. (2001). Silicon in agriculture, studies in plant sciences (Vol. 40). Dordrecht, Netherlands: Elsevier.

    Google Scholar 

  • Diao, M., Ma, L., Wang, J., Cui, J., Fu, A., & Liu, H.-Y. (2014). Selenium promotes the growth and photosynthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system. Journal of Plant Growth Regulation, 33, 671–682.

    Article  CAS  Google Scholar 

  • Djanaguiraman, M., Devi, D. D., Shanker, A. K., Sheeba, A., & Bangarusamy, U. (2005). Selenium- an antioxidative protectant in soybean during senescence. Plant and Soil, 272, 77–86.

    Article  CAS  Google Scholar 

  • Djanaguiraman, M., Prasad, P. V. V., & Seppanen, M. (2010). Selenium protects sorghum leaves from oxidative damage under high temperature stress by enhancing antioxidant defense system. Plant Physiology and Biochemistry, 48, 999–1007.

    Article  CAS  PubMed  Google Scholar 

  • Doncheva, S., Poschenrieder, C., Stoyanova, Z., Georgieva, K., Velichkova, M., & Barceló, J. (2009). Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environmental and Experimental Botany, 65, 189–197.

    Article  CAS  Google Scholar 

  • Du, H., Liang, Y., Pei, K., & Ma, K. (2011). UV radiation-responsive proteins in rice leaves: A proteomic analysis. Plant & Cell Physiology, 52, 306–316.

    Article  CAS  Google Scholar 

  • Ducic, T., & Polle, A. (2005). Transport and detoxification of manganese and copper in plants. Brazilian Journal of Plant Physiology, 17, 103–112.

    Article  CAS  Google Scholar 

  • Dupuis, L., & Dumas, C. (1990). Influence of temperature stress on in vitro fertilization and heat shock protein synthesis in maize (Zea mays L.) reproductive systems. Plant Physiology, 94, 665–670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ebrahimian, E., & Bybordi, A. (2011). Exogenous silicium and zinc increase antioxidant enzyme activity and alleviate salt stress in leaves of sunflower. Journal of Food, Agriculture and Environment, 9, 422–427.

    CAS  Google Scholar 

  • Ekelund, N. G. A., & Danilov, R. A. (2001). The influence of selenium on photosynthesis and “light-enhanced dark respiration” (LEDR) in the flagellate Euglena gracilis after exposure to ultraviolet radiation. Aquatic Sciences, 63, 57465.

    Google Scholar 

  • Ella, E. S., Kawano, N., & Ito, O. (2003). Importance of active oxygen-scavenging system in the recovery of rice seedlings after submergence. Plant Science, 165, 85–93.

    Article  CAS  Google Scholar 

  • Elstner, E. F. (1991). Mechanisms of oxygen activation in different compartments of plant cells. In E. J. Pell & K. L. Steffen (Eds.), Active oxygen/oxidative stress and plant metabolism (pp. 13–25). Rockville, MD: American Society of Plant Physiology.

    Google Scholar 

  • Fabiano, C. C., Tezotto, T., Favarin, J. L., Polacco, J. C., & Mazzafera, P. (2015). Essentiality of nickel in plants: A role in plant stresses. Frontiers in Plant Science, 6, 754. doi:10.3389/fpls.2015.00754.

    Article  PubMed  PubMed Central  Google Scholar 

  • Farooq, M., Aziz, T., Wahid, A., Lee, D. J., & Siddique, K. H. M. (2009). Chilling tolerance in maize: Agronomic and physiological approaches. Crop & Pasture Science, 60, 501–516.

    Article  Google Scholar 

  • Farooq, M. A., Detterbeck, A., Clemens, S., & Dietz, K.-J. (2016). Silicon-induced reversibility of cadmium toxicity in rice. Journal of Experimental Botany, 67(11), 3573–3585. doi:10.1093/jxb/erw175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feng, J., Shi, Q., Wang, X., Wei, M., Yang, F., & Xu, H. (2010). Silicon supplementation ameliorated the inhibition of photosynthesis and nitrate metabolism by cadmium (cd) toxicity in Cucumis sativus L. Scientia Horticulturae, 123, 521–530.

    Article  CAS  Google Scholar 

  • Feng, Z., Pang, J., Kobayashi, K., Zhu, Z. N., & Ort, D. R. (2011). Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biology, 17, 580–591.

    Article  Google Scholar 

  • Filek, M., Keskinen, R., Hartikainen, H., Szarejko, I., Janiak, A., Miszalski, Z., & Golda, A. (2008). The protective role of selenium in rape seedlings subjected to cadmium stress. Journal of Plant Physiology, 165, 833–844.

    Article  CAS  PubMed  Google Scholar 

  • Fisarakis, I., Chartzoulakis, K., & Stavrakas, D. (2001). Response of sultana vines (V. vinifera L.) on six rootstocks to NaCl salinity exposure and recovery. Agricultural Water Management, 51, 13–27.

    Article  Google Scholar 

  • Foster, K. W., Timm, H., Labanauskas, C. K., & Oshima, R. J. (1983). Effects of ozone and sulfur dioxide on tuber yield and quality of potatoes. Journal of Environmental Quality, 12, 75–80.

    Article  CAS  Google Scholar 

  • Fu, X. Z., Xing, F., Wang, N. Q., Peng, L. Z., Chun, C. P., Cao, L., Ling, L. L., & Jiang, C. L. (2014). Exogenous spermine pretreatment confers tolerance to combined high-temperature and drought stress in vitro in trifoliate orange seedlings via modulation of antioxidative capacity and expression of stress-related genes. Biotechnology and Biotechnological Equipment, 28, 192–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, S. R., Yan, M., Cao, W., Yang, S., Wang, F., & Chen, F. (2008). Effects of copper on growth, antioxidant enzymes and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedling. Plant, Soil and Environment, 54(3), 117–122.

    CAS  Google Scholar 

  • Gao, W., Zheng, Y., Slusser, J. R., Heisler, G. M., Grant, R. H., Xu, J., & He, D. (2004). Effects of supplementary ultraviolet-B irradiance on maize yield and qualities: A field experiment. Photochemistry and Photobiology, 80, 127–131.

    Article  CAS  PubMed  Google Scholar 

  • García-Sánchez, F., Syvertsen, J. P., Gimeno, V., Botia, P., & Pérez- Pérez, J. G. (2007). Responses to flooding and drought stress by two citrus root stock seedlings with different water-use efficiency. Physiologia Plantarum, 130, 532–542.

    Article  CAS  Google Scholar 

  • Gherardi, M., & Rengel, Z. (2003). Genotypes of lucerne (Medicago sativa L.) show differential tolerance to manganese deficiency and toxicity when grown in bauxite residue sand. Plant and Soil, 249, 287–296.

    Article  CAS  Google Scholar 

  • Gill, S. S., & Tuteja, N. (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48, 909–930.

    Article  CAS  PubMed  Google Scholar 

  • Gillespie, K. M., Rogers, A., & Ainsworth, E. A. (2011). Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). Journal of Experimental Botany, 62(8), 2667–2678. doi:10.1093/jxb/erq435.

    Article  CAS  PubMed  Google Scholar 

  • Gomes-Filho, E., Machado Lima, C. R. F., Costa, J. H., da Silva, A. C., Guia Silva, d., Lima, M., de Lacerda, C. F., & Prisco, J. T. (2008). Cowpea ribonuclease: Properties and effect of NaCl-salinity on its activation during seed germination and seedling establishment. Plant Cell Reports, 27, 147–157.

    Article  CAS  PubMed  Google Scholar 

  • Goto, M., Ehara, H., Karita, S., Takabe, K., Ogawa, N., & Yamada, Y. (2003). Protective effect of silicon on phenolic biosynthesis and ultraviolet spectral stress in rice crop. Plant Science, 164, 349–356.

    Article  CAS  Google Scholar 

  • Greenberg, B. M., Wilson, M. I., Gerhardt, K. E., & Wilson, K. E. (1996). Morphological and physiological responses of Brassica napus to ultraviolet radiation: Photomodification of ribulose 1-5- bis phosphate Carboxilase/oxygenase and potential acclimation processes. Plant Physiology, 148, 78–85.

    Article  CAS  Google Scholar 

  • Guerinot, M. L. (2000). The ZIP family of metal transporters. Biochimica et Biophysica Acta—Biomembranes, 1465, 190–198.

    Article  CAS  Google Scholar 

  • Habibi, G. (2016). Effect of foliar-applied silicon on photochemistry, antioxidant capacity and growth in maize plants subjected to chilling stress. Acta Agriculturae Slovenica, 107, 33–43.

    Article  Google Scholar 

  • Hafeez, B., Khanif, Y. M., & Saleem, M. (2013). Role of zinc in plant nutrition: A review. American Journal of Agricultural Economics, 3, 374–391.

    CAS  Google Scholar 

  • Hajiboland, R., Sadeghzadeh, N., Ebrahimi, N., Sadeghzadeh, B., & Mohammadi, S. A. (2016). Influence of selenium in drought-stressed wheat plants under green house and field conditions. Acta Agriculturae Slovenica, 105, 175–191.

    Article  Google Scholar 

  • Hartmann, H. T., Kester, D. E., Davies, F. T. J., & Geneve, R. L. (1997). Plant propagation principles and practices (p. 770). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Hasanuzzaman, M. & Fujita, M. (2011). Exogenous silicon treatment alleviates salinity-induced damage in Brassica napus L. seedlings by up-regulating the antioxidant defense and methylglyoxal detoxification system. Abstract of Plant Biology 2011, American Society of Plant Biology. Retrieved February 12, 2003, from http://abstracts.aspb.org/pb2011/public/P10/P10001.html/.

  • Hasanuzzaman, M., & Fujita, M. (2012a). Heavy metals in the environment: Current status, toxic effects on plants and possible phytoremediation. In N. A. Anjum, M. A. Pereira, I. Ahmad, A. C. Duarte, S. Umar, & N. A. Khan (Eds.), Phytotechnologies: Remediation of environmental contaminants (pp. 7–73). Boca Raton, FL: CRC Press.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., & Fujita, M. (2012b). Selenium and plants’ health: The physiological role of selenium. In C. Aomori & M. Hokkaido (Eds.), Selenium: Sources, functions and health effects (pp. 101–122). New York: Nova Science Publishers.

    Google Scholar 

  • Hasanuzzaman, M., & Fujita, M. (2013). Exogenous sodium nitroprusside alleviates arsenic-induced oxidative stress in wheat (Triticum aestivum L.) seedlings by enhancing antioxidant defense and glyoxalase system. Ecotoxicology, 22, 584–596.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Fujita, M., Islam, M. N., Ahamed, K. U., & Nahar, K. (2009). Performance of four irrigated rice varieties under different levels of salinity stress. International Journal of Integrative Biology, 6, 85–90.

    Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2010). Selenium in higher plants: Physiological role, antioxidant metabolism and abiotic stress tolerance. Journal of Plant Science, 5, 354–375.

    Article  CAS  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2011a). Nitric oxide modulates antioxidant defense and the methylglyoxal detoxification system and reduces salinity-induced damage of wheat seedlings. Plant Biotechnology Reports, 5, 353–365.

    Article  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2011b). Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings. Biological Trace Element Research, 143, 1704–1721.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., da Silva, J. A. T., & Fujita, M. (2012a). Plant responses and tolerance to abiotic oxidative stress: Antioxidant defense is a key factor. In V. Bandi, A. K. Shanker, C. Shanker, & M. Mandapaka (Eds.), Crop stress and its management: Perspectives and strategies (pp. 261–316). Berlin: Springer.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Hossain, M. A., & Fujita, M. (2012b). Exogenous selenium pretreatment protects rapeseed seedlings from cadmium-induced oxidative stress by upregulating the antioxidant defense and methylglyoxal detoxification systems. Biological Trace Element Research, 149, 248–261.

    Article  CAS  PubMed  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013a). Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Ecophysiology and responses of plants under salt stress (pp. 25–87). New York: Springer.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2013b). Extreme temperatures, oxidative stress and antioxidant defense in plants. In K. Vahdati & C. Leslie (Eds.), Abiotic stress—plant responses and applications in agriculture (pp. 169–205). Rijeka: InTech. doi:10.5772/54833.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Fujita, M., Ahmad, P., Chandna, R., Prasad, M. N. V., & Ozturk, M. (2013c). Enhancing plant productivity under salt stress: Relevance of poly-omics. In P. Ahmad, M. M. Azooz, & M. N. V. Prasad (Eds.), Salt stress in plants: Signaling, omics and adaptations (pp. 113–156). New York: Springer.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Gill, S. S., & Fujita, M. (2013d). Physiological role of nitric oxide in plants grown under adverse environmental conditions. In N. Tuteja & S. S. Gill (Eds.), Plant acclimation to environmental stress (pp. 269–322). New York: Springer. doi:10.1007/978-1-4614-5001-6_11.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Alam, M. M., Rahman, A., Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014a). Exogenous proline and glycine betaine mediated upregulation of antioxidant defense and glyoxalase systems provides better protection against salt-induced oxidative stress in two rice (Oryza sativa L.) varieties. BioMed Research International, 2014, 757219. doi:10.1155/2014/757219.

    PubMed  PubMed Central  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2014b). Silicon and selenium: Two vital trace elements in conferring abiotic stress tolerance to plants. In A. Parvaiz & S. I. Rasool (Eds.), Emerging technologies and management of crop stress tolerance, Biological techniques (Vol. 1, pp. 375–420). New York: Academic Press.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Gill, S. S., & Fujita, M. (2014c). Drought stress responses in plants, oxidative stress, and antioxidant defense. In N. Tuteja & S. S. Gill (Eds.), Climate change and plant abiotic stress tolerance (pp. 209–250). Germany: Wiley-Blackwell. doi:10.1002/9783527675265.ch09.

    Google Scholar 

  • Hasanuzzaman, M., Nahar, K., & Fujita, M. (2015). Arsenic toxicity in plants and possible remediation. In K. R. Hakeem, M. Sabir, M. Ozturk, & A. Murmet (Eds.), Soil remediation and plants: Prospects and challenges (pp. 433–501). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Hasanuzzaman, M., Nahar, K., Rahman, A., Mahmud, J. A., Hossain, M. S., & Fujita, M. (2016). Soybean production and environmental stresses. In M. Miransari (Ed.), Environmental stresses in soybean production: Soybean production (Vol. 2, pp. 61–102). New York: Elsevier.

    Chapter  Google Scholar 

  • Hatfield, J. L., Boote, K. J., Kimball, B. A., Ziska, L. H., Izaurralde, R. C., Ort, D., Thomson, A. M., & Wolfe, D. W. (2011). Climate impacts on agriculture: Implications for crop production. Agronomy Journal, 103, 351–370.

    Article  Google Scholar 

  • Hawrylak-Nowak, B. (2009). Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress. Biological Trace Element Research, 132, 259–269.

    Article  CAS  PubMed  Google Scholar 

  • Hawrylak-Nowak, B. (2015). Selenite is more efficient than selenate in alleviation of salt stress in lettuce plants. Acta Biologica Cracoviensia Series Botanica, 57, 49–54.

    CAS  Google Scholar 

  • Hawrylak-Nowak, B., Matraszek, R., & Szyma’nska, M. (2010). Selenium modifies the effect of short-term chilling stress on cucumber plants. Biological Trace Element Research, 138, 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Hedhly, A. (2011). Sensitivity of flowering plant gametophytes to temperature fluctuations. Environmental and Experimental Botany, 74, 9–16.

    Article  Google Scholar 

  • Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14, 30–36.

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Rodrígueź, M. B., González-Fontes, A., Rexach, J., Camacho-Cristóbal, J. J., Maldonado, J. M., & Navarro-Gochicoa, M. T. (2010). Role of boron in vascular plants and mechanisms to boron stresses. Plant Stress, 4(2), 115–122.

    Google Scholar 

  • Heyno, E., Mary, V., Schopfer, P., & Krieger-Liszkay, A. (2011). Oxygen activation at the plasma membrane: Relation between superoxide and hydroxyl radical production by isolated membranes. Planta, 234, 35–45.

    Article  CAS  PubMed  Google Scholar 

  • Hirschi, K. D., Korenkov, V. D., Wilganowski, N. L., & Wagner, G. J. (2000). Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiology, 124, 125–133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain, M. M., Liu, X., & Qi, X. (2014). Differences between soybean genotypes in physiological response to sequential soil drying and rewetting. The Crop Journal, 2, 1–15. doi:10.1016/j.cj.2014.08.001.

    Article  CAS  Google Scholar 

  • Hossain, Z., López-Climent, M. F., Arbona, V., Pérez-Clemente, R. M., & Gómez-Cadenas, A. (2009). Modulation of the antioxidant system in citrus under waterlogging and subsequent drainage. Journal of Plant Physiology, 166, 1391–1404.

    Article  CAS  PubMed  Google Scholar 

  • Hu, W. H., Song, X. S., Shi, K., Xia, X. J., Zhou, Y. H., & JQ, Y. (2008). Changes in electron transport, superoxide dismutase and ascorbate peroxidase isoenzymes in chloroplasts and mitochondria of cucumber leaves as influenced by chilling. Photosynthetica, 46, 581–588.

    Article  CAS  Google Scholar 

  • Hurry, V. M., Malmberg, G., Gardestorm, P., & Oquist, G. (1994). Effects of a short term shift to low temperature and of long term cold hardening on photosynthesis and ribulose-1, 5- bisphosphate carboxylase/oxygenase and sucrose phosphate activity in leaves of winter rye (Secale cereale L.) Plant Physiology, 106, 983–990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • IPCC. (2008). Climate change and water. In B. C. Bates, Z. W. Kundzewicz, J. Palutikof, & S. Wu (Eds.), Technical paper of the intergovernmental panel for climate change (p. 210). Geneva: Secretariat.

    Google Scholar 

  • Iqbal, M., Hussain, I., Liaqat, H., Ashraf, M. A., Rasheed, R., & Rehman, A. U. (2015). Exogenously applied selenium reduces oxidative stress and induces heat tolerance in spring wheat. Plant Physiology and Biochemistry, 94, 95–103.

    Article  CAS  PubMed  Google Scholar 

  • Irfan, M., Hayat, S., Hayat, O., Afroz, S., & Ahmad, A. (2010). Physiological and biochemical changes in plants under waterlogging. Protoplasma, 241, 3–17.

    Article  CAS  PubMed  Google Scholar 

  • Ismail, A. M., & Hall, A. E. (1999). Reproductive-stage, heat tolerance, leaf membrane thermostability and plant morphology in cowpea. Crop Science, 39, 1762–1768.

    Article  Google Scholar 

  • Jackson, M. B., & Ram, P. C. (2003). Physiological and molecular basis of susceptibility and tolerance of rice. Annals of Botany, 91(2), 227–241.

    Google Scholar 

  • Jain, M., Prasad, P. V. V., Boote, K. J., Hartwell, A. L., & Chourey, P. S. (2007). Effects of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L). Planta, 227, 67–79.

    Article  CAS  PubMed  Google Scholar 

  • James, R. A., von Caemmerer, S., Condon, A. G., Zwart, A. B., & Munns, R. (2008). Genetic variation in tolerance to the osmotic stress component of salinity stress in durum wheat. Functional Plant Biology, 35, 111–123.

    Article  CAS  Google Scholar 

  • Janislampi, K. W. (2012). Effect of silicon on plant growth and drought stress tolerance. M.S. thesis, Department of Plants, Soils, and Climate, Utah State University. Retrieved February 11, 2013, from http://digitalcommons.usu.edu/etd/1360/.

  • Javadmanesh, S., Rahmani, F., & Pourakbar, L. (2012). UV-B radiation, soil salinity, drought stress and their concurrent effects on some physiological parameters in maize plant American-Eurasian. The Journal of Toxicological Sciences, 4(4), 154–164.

    Google Scholar 

  • Jiang, Q. W., Kiyoharu, O., & Ryozo, I. (2002). Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in Rice. Plant Physiology, 129, 1880–1891.

    Article  CAS  Google Scholar 

  • Kalbarczyk, R. (2009). Potential reduction in cucumber yield (Cucumis sativus L.) in poland caused by unfavourable thermal conditions of soil. Acta Scientiarum Polonorum Hortorum Cultus, 8, 45–58.

    Google Scholar 

  • Kalisz, A., & Cebula, S. (2001). Direct plant covering and soil mulching in the spring production of some Chinese cabbage cultivars. Effect of temperature on premature bolting. Folia Horticulturae, 13, 13–22.

    Google Scholar 

  • Kato, Y., Miwa, K., Takano, J., Wada, M., & Fujiwara, T. (2009). Highly boron deficiency tolerant plants generated by enhanced expression of NIP5;1, a boric acid channel. Plant & Cell Physiology, 50, 58–66.

    Article  CAS  Google Scholar 

  • Kaveh, H., Nemati, H., Farsi, M., & Jartoodeh, S. V. (2011). How salinity affect germination and emergence of tomato lines. Journal of Biological and Environmental Sciences, 5, 159–163.

    Google Scholar 

  • Kesselmeier, J., & Staudt, M. (1999). Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. Journal of Atmospheric Chemistry, 33, 23–88.

    Article  CAS  Google Scholar 

  • Khan, M. A., & Weber, D. J. (2008). Ecophysiology of high salinity tolerant plants (tasks for vegetation science) (1st ed.). Amsterdam: Springer.

    Google Scholar 

  • Kong, L., Wang, M., & Bi, D. (2005). Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress. Plant Growth Regulation, 45, 155–163.

    Article  CAS  Google Scholar 

  • Krzyzanowski, F. C., & Delouche, J. C. (2011). Germination of cotton seed in relation to temperature. Revista Brasileira de Farmacognosia, 33, 543–548.

    Google Scholar 

  • Kumar, P., Pal, M., Joshi, R., & Sairam, R. K. (2013). Yield, growth and physiological responses of mung bean (Vigna radiata L) genotypes to waterlogging at vegetative stage. Physiology and Molecular Biology of Plants, 19(2), 209–220.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, R. R., Goswami, S., Sharma, S. K., Singh, K., Gadpayle, K. A., Kuma, N., Rai, G. K., Singh, M., & Rai, R. D. (2012). Protection against heat stress in wheat involves change in cell membrane stability, antioxidant enzymes, osmolyte, H2O2 and transcript of heat shock protein. International Journal of Plant Physiology and Biochemistry, 4, 83–91.

    CAS  Google Scholar 

  • Kumutha, D., Ezhilmathi, K., Sairam, R. K., Srivastava, G. C., Deshmukh, P. S., & Meena, R. C. (2009). Waterlogging induced oxidative stress and antioxidant activity in pigeon pea genotypes. Biologia Plantarum, 53, 75–84.

    Article  CAS  Google Scholar 

  • Kuznetsov, V. V., Kholodova, V. P., Kuznetsov, V. V., & Yagodin, B. A. (2003). Selenium regulates the water status of plants exposed to drought. Doklady Biological Sciences, 390, 266–268.

    Google Scholar 

  • Latef, A. A. A., & Tran, L.-S. (2016). Impacts of priming with silicon on the growth and tolerance of maize plants to alkaline stress. Frontiers in Plant Science. doi:10.3389/fpls.2016.00243.

  • Lee, H., Guo, Y., Ohta, M., Xiong, L., Stevenson, B., & Zhu, J. K. (2002). LOS2, a genetic locus required for cold responsive transcription encodes a bifunctional enolase. The EMBO Journal, 21, 2692–2702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leisner, C. P., Cousins, A. B., Offermann, S., Okita, T. W., & Edwards, G. E. (2010). The effects of salinity on photosynthesis and growth of the single-cell C4 species Bienertia sinuspersici (Chenopodiaceae). Photosynthesis Research, 106, 201–214.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Cang, Z., & Jiao, F. (2015). Influence of drought stress on photosynthetic characteristics and protective enzymes of potato at seedling stage. Journal of the Saudi Society of Agricultural Sciences. doi:10.1016/j.jssas.2015.03.001.

  • Li, M., Li, Y., Li, H., & Wu, G. (2011). Overexpression of AtNHX5 improves tolerance to both salt and drought stress in (Broussonetia papyrifera L.) vent. Tree Physiology, 31, 349–357. doi:10.1093/treephys/tpr003.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Khan, M. A., Yamaguchi, S., & Kamiya, Y. (2005). Effects of heavy metals on seed germination and early seedling growth of Arabidopsis thaliana. Plant Growth Regulation, 46, 45–50.

    Article  CAS  Google Scholar 

  • Liang, Y., Sun, W., Zhu, Y. G., & Christie, P. (2007). Mechanisms of silicon mediated alleviation of abiotic stresses in higher plants: A review. Environmental Pollution, 147, 422–428.

    Article  CAS  PubMed  Google Scholar 

  • Liang, Y., Zhu, J., Li, Z., Chu, G., Ding, Y., & Zhang, J. (2008). Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany, 64, 286–294.

    Article  CAS  Google Scholar 

  • Lidon, F. C., Barreiro, M., & Ramalho, J. (2004). Manganese accumulation in rice: Implications for photosynthetic functioning. Journal of Plant Physiology, 161, 1235–1244.

    Article  CAS  PubMed  Google Scholar 

  • Lin, Y. F., Hassan, Z., Talukdar, S., Schat, H., & Aarts, M. G. M. (2016). Expression of the ZNT1 zinc transporter from the metal Hyperaccumulator Noccaea Caerulescens confers enhanced zinc and cadmium tolerance and accumulation to Arabidopsis thaliana. PloS One, 11(3), e0149750. doi:10.1371/journal.pone.0149750.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lindsey, L., & Thomson, P. (2012). High temperature effects on corn and soybean. C.O.R.N Newsletter, 2012, 23–26.

    Google Scholar 

  • Liu, B., Liu, X., Li, Y., & Herbert, S. J. (2013). Effects of enhanced UV-B radiation on seed growth characteristics and yield components in soybean. Field Crops Research, 154, 158–163.

    Article  Google Scholar 

  • Liu, J. J., Lin, S. H., PL, X., Wang, X. J., & Bai, J. G. (2009). Effects of exogenous silicon on the activities of antioxidant enzymes and lipid peroxidation in chilling-stressed cucumber leaves. Agricultural Sciences in China, 8, 1075–1086.

    Article  CAS  Google Scholar 

  • Liu, S. J., Heng-Heng, X., Wang, W.-Q., Ni, L., Wang, W.-P., Møller, I. M., & Song, S.-Q. (2014). A proteomic analysis of rice seed germination as affected by high temperature and ABA treatment. Physiologia Plantarum, 154, 142–161.

    Article  PubMed  CAS  Google Scholar 

  • Lombardi, T., & Lupi, B. (2006). Effect of salinity on the germination and growth of Hordeum secalinum Schreber (Poaceae) in relation to the seeds after-ripening time. Atti Soc tosc Sci nat Mem Serie B, 113, 37–42.

    Google Scholar 

  • Long, S. P., & Ort, D. R. (2010). More than taking the heat: Crops and global change. Current Opinion in Plant Biology, 13, 240–247.

    Article  Google Scholar 

  • Luo, H. H., Zhang, Y. L., & Zhang, W. F. (2016). Effects of water stress and rewatering on photosynthesis, root activity, and yield of cotton with drip irrigation under mulch. Photosynthetica, 54, 65–73. doi:10.1007/s11099-015-0165-7.

    Article  CAS  Google Scholar 

  • Lyman, N. B., Jagadish, K. S. V., Nalley, L. L., Dixon, B. L., & Siebenmorgen, T. (2013). Neglecting rice milling yield and quality underestimates economic losses from high-temperature stress. PloS One, 8, e72157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma, J. F., & Yamaji, N. (2008). Functions and transport of silicon in plants. Cellular and Molecular Life Sciences, 65, 3049–3057.

    Article  CAS  PubMed  Google Scholar 

  • Mahajan, S., & Tuteja, N. (2005). Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics, 444, 139–158.

    Article  CAS  PubMed  Google Scholar 

  • Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiologiae Plantarum, 29, 177–187.

    Article  CAS  Google Scholar 

  • Manaf, H. H. (2016). Beneficial effects of exogenous selenium, glycine betaine and seaweed extract on salt stressed cowpea plant. Annals of Agricultural Science, 61, 41–48.

    Article  Google Scholar 

  • Manivannan, A., Soundararajan, P., Muneer, S., Ho Ko, C., & Jeong, B. R. (2016). Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International. doi:10.1155/2016/3076357.

  • Marcińska, I., Czyczyło-Mysza, I., & Skrzypek, E. (2013). Impact of osmotic stress on physiological and biochemical characteristics in drought-susceptible and drought-resistant wheat genotypes. Acta Physiologiae Plantarum, 35, 451–461. doi:10.1007/s11738-012-1088-6.

    Article  CAS  Google Scholar 

  • Mateos-Naranjo, E., Andrades-Moreno, L., & Davy, A. J. (2013). Silicon alleviates deleterious effects of high salinity on the halophytic grass Spartina densiflora. Plant Physiology and Biochemistry, 63, 115–121.

    Article  CAS  PubMed  Google Scholar 

  • Mauad, M., Costa Crusciol, C. A., Nascente, A. S., Filho, H. G., & Lima, G. P. P. (2016). Effects of silicon and drought stress on biochemical characteristics of leaves of upland rice cultivars. Revista Ciência Agronômica, 47, 532–539.

    Article  Google Scholar 

  • McNamara, A. E., & Hill, W. R. (2000). UV-B irradiance gradient affects photosynthesis and pigments but not food quality of perihyton. Freshwater Biology, 43, 649–662.

    Article  Google Scholar 

  • Mditshwa, A., Bower, J. P., Bertling, I., Mathaba, N., & Tesfay, S. Z. (2013). The potential of postharvest silicon dips to regulate phenolics in citrus peel as a method to mitigate chilling injury in lemons. African Journal of Biotechnology, 12, 1482–1489.

    Google Scholar 

  • Migocka, M., Papierniak, A., Maciaszczyk-Dziubińska, E., Poździk, P., Posyniak, E., Garbiec, A., & Filleur, S. (2014). Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. Journal of Experimental Botany, 65(18), 5367–5384. doi:10.1093/jxb/eru295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millaleo, R., Reyes-Diaz, M., Ivanov, A. G., Mora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10, 476–449.

    Article  Google Scholar 

  • Miller, P., Lanier, W., Brandt, S. (2001). Using growing degree days to predict plant stages. Montana State University Extension Service. SKU MT200103AG.

    Google Scholar 

  • Mithofer, A., Schulze, B., & Boland, W. (2004). Biotic and heavy metal stress response in plants: Evidence for common signals. FEBS Letters, 566, 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., & Blumwald, E. (2010). Genetic engineering for modern agriculture: Challenges and perspectives. Annual Review of Plant Biology, 61, 443–462.

    Article  CAS  PubMed  Google Scholar 

  • Mittler, R., Finka, A., & Goloubinoff, P. (2012). How do plants feel the heat? Trends in Biochemical Sciences, 37, 118–125.

    Article  CAS  PubMed  Google Scholar 

  • Moeinian, M. R., Zargari, K., & Hasanpour, J. (2011). Effect of boron foliar spraying application on quality characteristics and growth parameters of wheat grain under drought stress. American-Eurasian Journal of Agricultural & Environmental Sciences, 10(4), 593–599.

    CAS  Google Scholar 

  • Monjezi, F., Vazan, F., & Hassnzadehdelouei, M. (2012). Effects of iron and zinc spray on wheat in drought stress. Cercetări Agronomice în Moldova, XLVI(1), 153.

    Google Scholar 

  • Morison, J. I. L., Baker, N. R., Mullineaux, P. M., & Davies, W. J. (2008). Improving water use in crop production. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 639–658.

    Article  CAS  Google Scholar 

  • Mozafariyan, M., Kamelmanesh, M. M., & Hawrylak-Nowak, B. (2016). Ameliorative effect of selenium on tomato plants grown under salinity stress. Archives of Agronomy and Soil Science. doi:10.1080/03650340.2016.1149816.

  • Moussa, H. R., & Abdel-Aziz, S. M. (2008). Comparative response of drought tolerant and drought sensitive maize genotypes to water stress. Australian Journal of Crop Science, 1(1), 31–36.

    Google Scholar 

  • Müller-Xing, R., Xing, Q., & Goodrich, J. (2014). Footprints of the sun: Memory of UV and light stress in plants. Frontiers in Plant Science, 5, 474.

    PubMed  PubMed Central  Google Scholar 

  • Munns, R. (2002). Comparative physiology of salt and water stress. Plant, Cell & Environment, 25, 239–250.

    Article  CAS  Google Scholar 

  • Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651–681.

    Article  CAS  PubMed  Google Scholar 

  • Mustafiz, A., Ghosh, A., Tripathi, A. K., Kaur, C., Ganguly, A. K., Bhavesh, N. S., Tripathi, J. K., Pareek, A., Sopory, S. K., & Singla-Pareek, S. L. (2014). A unique Ni2+-dependent and methylglyoxal-inducible rice glyoxalase I possesses a single active site and functions in abiotic stress response. The Plant Journal, 78, 951–963.

    Article  CAS  PubMed  Google Scholar 

  • Nahar, K., Biswas, J. K., & Shamsuzzaman, A. M. M. (2012). Cold stress tolerance in rice plant: Screening of genotypes based on morphophysiological traits. Saarbrücken, Germany: Lambert Academic Publishing.

    Google Scholar 

  • Nahar, K., Biswas, J. K., Shamsuzzaman, A. M. M., Hasanuzzaman, M., & Barman, H. N. (2009). Screening of indica rice (Oryza sativa L.) genotypes against low temperature stress. Botany Research International, 2, 295–303.

    Google Scholar 

  • Nahar, K., & Hasanuzzaman, M. (2009). Germination, growth, nodulation and yield performance of three mungbean varieties under different levels of salinity stress. Green Farming, 2, 825–829.

    Google Scholar 

  • Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2014). Regulatory roles of exogenous glutathione in conferring salt tolerance in mung bean (Vigna radiata L.): Implication of antioxidant defense and methylglyoxal detoxification system. Biologia Plantarum, 59, 745–756.

    Article  CAS  Google Scholar 

  • Nahar, K., Hasanuzzaman, M., Ahamed, K. U., Öztürk, M., & Fujita, M. (2015a). Plant responses and tolerance to high temperature stress: Role of exogenous phytoprotectants. In K. U. R. Hakeem (Ed.), Crop production and global environmental issues (pp. 385–436). Cham, Switzerland: Springer.

    Chapter  Google Scholar 

  • Nahar, K., Hasanuzzaman, M., Alam, M. M., & Fujita, M. (2015b). Exogenous spermidine alleviates low temperature injury in mung bean (Vigna radiata L.) seedlings by modulating ascorbate-glutathione and glyoxalase pathway. International Journal of Molecular Sciences, 16, 30117–30132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nahar, K., Hasanuzzaman, M., Alam, M. M., Rahman, A., Suzuki, T., & Fujita, M. (2016). Polyamine and nitric oxide crosstalk: antagonistic effects on cadmium toxicity in mung bean plants through upregulating the metal detoxification, antioxidant defense and methylglyoxal detoxification systems. Ecotoxicology and environmental safety, 126, 245–255.

    Google Scholar 

  • Nahar, K., Hasanuzzaman, M., Alam, M. M., Rahman, A., Mahmud, J. A., Suzuki, T., & Fujita, M. (2017). Insights into spermine-induced combined high temperature and drought tolerance in mung bean: osmoregulation and roles of antioxidant and glyoxalase system. Protoplasma, 254(1), 445–460.

    Google Scholar 

  • Naim, A. (2015). Mitigation of salt stress in rice by exogenous application of selenium. M.S. thesis, Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh.

    Google Scholar 

  • Nasibi, F., & M-Kalantari, K. H. (2005). The effects of uv-a, uv-b and uv-c on protein and ascorbate content, lipid peroxidation and biosynthesis of screening compounds in Brassica napus. Iranian Journal of Science and Technology, 29, 40–48.

    Google Scholar 

  • Nawaz, F., Ashraf, M. Y., Ahmad, R., & Waraich, E. A. (2013). Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions. Biological Trace Element Research, 151, 284–293.

    Google Scholar 

  • Nawaz, F., Ashraf, M. Y., Ahmad, R., Waraich, E. A., & Shabbir, R. N. (2014). Selenium (se) regulates seedling growth in wheat under drought stress. Advances in Chemistry. doi:10.1155/2014/143567.

  • Nelson, J. M., Palzkill, D. A., & Bartels, P. G. (1993). Irrigation cut-off date affects growth, frost damage, and yield of jojoba. Journal of the American Society for Horticultural Science, 118(6), 731–735.

    Google Scholar 

  • Nishiuchi, S., Yamauchi, T., Takahashi, H., Kotula, L., & Nakazono, M. (2012). Mechanisms for coping with submergence and waterlogging in rice. Rice, 5, 2. doi:10.1186/1939-8433-5-2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu, G., Rodriguez, D. S., Circle, M., et al. (2006). Impact of drought and temperature on growth and leaf gas exchange of six bedding plant species under greenhouse conditions. Hortscience, 41, 1408–1411.

    Google Scholar 

  • Noctor, G., De Paepe, R., & Foyer, C. H. (2007). Mitochondrial redox biology and homeostasis in plants. Trends in Plant Science, 12, 125–134.

    Article  CAS  PubMed  Google Scholar 

  • Noctor, G., Veljovic‐Jovanovic, S. O. N. J. A., Driscoll, S., Novitskaya, L., & Foyer, C. H. (2002). Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration? Annals of Botany, 89(7), 841–850.

    Google Scholar 

  • Obidiegwu, J. E., Bryan, G. J., Jones, H. G., & Prashar, A. (2015). Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Frontiers in Plant Science, 6, 542. doi:10.3389/fpls.2015.00542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Othman, Y., Al-Karaki, G., Al-Tawaha, A. R., & Al-Horani, A. (2006). Variation in germination and ion uptake in barley genotypes under salinity conditions. World Journal of Agricultural Sciences, 2, 11–15.

    Article  Google Scholar 

  • Pal’ove-Balang, P., Kisova, A., Pavlovkin, J., & Mistrik, I. (2006). Effect of manganese on cadmium toxicity in maize seedlings. Plant, Soil and Environment, 52, 143–149.

    Google Scholar 

  • Pandey, G. K. (2015). Elucidation of abiotic stress signaling in plants: Functional genomics perspectives (Vol. 2). New York: Springer.

    Book  Google Scholar 

  • Pandya, D. H., Mer, R. K., Prajith, P. K., & Pandey, A. N. (2004). Effect of salt stress and manganese supply on growth of barley seedlings. Journal of Plant Nutrition, 27, 1361–1379.

    Article  CAS  Google Scholar 

  • Parveen, N., & Ashraf, M. (2010). Role of silicon in mitigating the adverse effects of salt stress on growth and photosynthetic attributes of two maize (Zea mays L.) cultivars grown hydroponically. Pakistan Journal of Botany, 42, 1675–1684.

    CAS  Google Scholar 

  • Peacock, J. M., Miller, W. B., Matsuda, K., & Robinson, D. L. (1993). Role of heat girdling in early seedling death in sorghum. Crop Science, 30, 138–143.

    Article  Google Scholar 

  • Pedrero, Z., Madrid, Y., Hartikainen, H., & Cámara, C. (2008). Protective effect of selenium in broccoli (Brassica oleracea) plants subjected to cadmium exposure. Journal of Agricultural and Food Chemistry, 56, 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Peng, K., Chunling, L., Wuxin, Y., Chunlan, L., Xiangdong, L., & Shen, Z. (2008). Manganese uptake and interactions with cadmium in the hyperaccumulator-Phytolacca americana L. Journal of Hazardous Materials, 154, 674–681.

    Article  CAS  PubMed  Google Scholar 

  • Peng, S., Huang, J., Sheehy, J. E., Laza, R. C., Visperas, R. M., Zhong, X., Centeno, G. S., Khush, G. S., & Cassman, K. G. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101, 9971–9975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pennanen, A., Xue, T., & Hartikainen, H. (2002). Protective role of selenium in plant subjected to severe UV irradiation stress. Journal of Applied Botany, 76, 66–76.

    CAS  Google Scholar 

  • Pirovano, L., Morgutti, S., Espen, L., & Cocucci, S. M. (1997). Differences in the reactivation process in thermosensitive seeds of Phacelia tanacetifolia with germination inhibited by high temperature (30°C). Physiologia Plantarum, 99, 211–220.

    Article  CAS  Google Scholar 

  • Pittman, J. (2005). Managing the manganese: Molecular mechanisms of manganese transport and homeostasis. The New Phytologist, 167, 733–742.

    Article  CAS  PubMed  Google Scholar 

  • Porch, T. G. (2006). Application of stress indices for heat tolerance screening of common bean. Journal of Agronomy and Crop Science, 192, 390–394.

    Article  Google Scholar 

  • Prabagar, S., Hodson, M. J., & Evans, D. E. (2011). Silicon amelioration of aluminium toxicity and cell death in suspension cultures of Norway spruce (Picea abies L.) Environmental and Experimental Botany, 70, 266–276.

    Article  CAS  Google Scholar 

  • Prasad, P. V. V., Pisipati, S. R., Momčilović, I., & Ristic, Z. (2011). Independent and combined effects of high temperature and drought stress during grain filling on plant yield and chloroplast EF-Tu expression in spring wheat. Journal of Agronomy and Crop Science, 197, 430–441.

    Article  CAS  Google Scholar 

  • Rahman, M. S., Matsumuro, T., Miyake, H., & Takeoka, Y. (2000). Salinity-induced Ultrastructural alterations in leaf cells of rice alternations in leaf cells of rice (Oryza sativa L.). Plant Production Science, 3, 422–429.

    Google Scholar 

  • Rahman, A., Mostofa, M. G., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2015). Exogenous calcium alleviates cadmium-induced oxidative stress in rice seedlings by regulating the antioxidant defense and glyoxalase systems. Brazilian Journal of Botany. doi:10.1007/s40415-015-0240-0.

  • Rahman, A., Hossain, M. S., Mahmud, J. A., Nahar, K., Hasanuzzaman, M., & Fujita, M. (2016). Manganese-induced salt stress tolerance in rice seedlings: Regulation of ion homeostasis, antioxidant defense and glyoxalase systems. Physiology and Molecular Biology of Plants. doi:10.1007/s12298-016-0371-1.

  • Ram, P. C., Singh, A. K., Singh, B. B., Singh, V. K., Singh, H. P., Setter, T. L., Singh, V. P., & Singh, R. K. (1999). Environmental characterization of floodwater in eastern India: Relevance to submergence tolerance of lowland rice. Experimental Agriculture, 35, 141–152.

    Article  Google Scholar 

  • Rasolohery, C. A., Berger, M., Lygin, A. V., Lozovaya, V. V., Nelson, R. L., & Dayde, J. (2008). Effect of temperature and water availability during late maturation of the soybean seed on germ and cotyledon isoflavone content and composition. Journal of Science and Food Agriculture, 88, 218–228.

    Article  CAS  Google Scholar 

  • Raven, J. A. (2001). Silicon transport at the cell and tissue level. In L. E. Datnoff, G. H. Snyder, & G. H. Korndorfer (Eds.), Silicon in agriculture (pp. 41–55). Amsterdam: Elsevier.

    Chapter  Google Scholar 

  • Ravindran, K. C., Indrajith, A., Pratheesh, P. V., Sanjiviraja, K., & Balakrishnan, V. (2010). Effect of ultraviolet-B radiation on biochemical and antioxidant defence system in Indigofera tinctoria L. seedlings. International Journal of Engineering Science and Technology, 2, 226–232.

    Article  Google Scholar 

  • Raziuddin, Farhatullah, Hassan, G., Akmal, M., Shah, S. S., Mohammad, F., Shafi, M., Bakht, J., & Zhou, W. (2011). Effects of cadmium and salinity on growth and photosynthesis parameters of Brassica species. Pakistan Journal of Botany, 43, 333–340.

    CAS  Google Scholar 

  • Reddy, K. R., Kakani, V. G., Zhao, D., Mohammed, A. R., & Gao, W. (2003). Cotton responses to ultraviolet-B radiation: Experimentation and algorithm development. Agricultural and Forest Meteorologyis, 120, 249–265.

    Article  Google Scholar 

  • Ren, B., Zhang, J., Li, X., Fan, X., Dong, S., Liu, P., & Zhao, B. (2014). Effects of waterlogging on the yield and growth of summer maize under field conditions. Canadian Journal of Plant Science, 94, 23–31.

    Article  Google Scholar 

  • Riaz-ud-din, Subhani, G. M., Ahmad, N., Hussain, M., & Rehman, A. U. (2010). Effect of temperature on development and grain formation in spring wheat. Pakistan Journal of Botany, 42, 899–906.

    Google Scholar 

  • Riley, G. J. P. (1981). Effects of high temperature on protein synthesis during germination of maize (Zea mays L.). Planta, 151, 75–80.

    Google Scholar 

  • Robertson, D., Zhang, H., Palta, J. A., Colmer, T., & Turner, N. C. (2009). Waterlogging affects the growth, development of tillers, and yield of wheat through a severe, but transient, N deficiency. Crop & Pasture Science, 60, 578–586.

    Article  CAS  Google Scholar 

  • Sairam, R. K., Dharmar, K., Lekshmy, S., & Chinnusam, V. (2011). Expression of antioxidant defense genes in mung bean (Vigna radiata L.) roots under water-logging is associated with hypoxia tolerance. Acta Physiologiae Plantarum, 33, 735–744.

    Article  CAS  Google Scholar 

  • Sajedi, N., Madani, H., & Naderi, A. (2011). Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (Zea mays L.) under water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 153–159.

    CAS  Google Scholar 

  • Sakata, T., Oshino, T., Miura, S., Tomabechi, M., Tsunaga, Y., Higashitani, N., Miyazawa, Y., Takahashi, H., Watanabe, M., & Higashitani, A. (2010). Auxins reverse plant male sterility caused by high temperatures. Proceedings of the National Academy of Sciences of the United States of America, 107, 8569–8574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salim, B. B. M. (2014). Effect of boron and silicon on alleviating salt stress in maize. Middle East Journal of Agricultural Research, 3(4), 1196–11204.

    Google Scholar 

  • Samreen, T., Humaira, & Shah, H. U. (2013). Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arabian Journal of Chemistry. doi:10.1016/j.arabjc.2013.07.005.

  • Sandalio, L. M., Rodríguez-Serrano, M., Romero-Puertas, M. C., & del Ríıo, L. A. (2013). Role of peroxisomes as a source of reactive oxygen species (ROS) signaling molecules. Del Río LA (ed) peroxisomes and their key role in cellular signaling and metabolism. Sub-Cellular Biochemistry, 69, 231–255.

    Article  CAS  PubMed  Google Scholar 

  • Sanghera, G. S., Wani, S. H., Hussain, W., & Singh, N. B. (2011). Engineering cold stress tolerance in crop plants. Current Genomics, 12, 30–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapeta, H., Costa, J. M., Lourenço, T., Marocod, J., Lindee, P. V., & Oliveiraa, M. M. (2013). Drought stress response in Jatropha curcas: Growth and physiology. Environmental and Experimental Botany, 85, 76–84.

    Article  CAS  Google Scholar 

  • Sarma, H. (2011). Metal hyperaccumulation in plants: A review focusing on phytoremediation technology. Journal of Environmental Science and Technology, 4, 118–138.

    Article  CAS  Google Scholar 

  • Sasaki, A., Yamaji, N., & Ma, J. F. (2016). Transporters involved in mineral nutrient uptake in rice. Journal of Experimental Botany, 67(12), 3645–3653. doi:10.1093/jxb/erw060.

    Article  CAS  PubMed  Google Scholar 

  • Sawada, H., Tsukahara, K., Kohno, Y., Suzuki, K., Nagasawa, N., & Tamaok, M. (2016). Elevated ozone deteriorates grain quality of Japonica Rice cv. Koshihikari, even if it does not cause yield reduction. Rice, 9, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sebastian, A., & Prasad, M. N. V. (2015). Iron-and manganese-assisted cadmium tolerance in Oryza sativa L.: Lowering of rhizotoxicity next to functional photosynthesis. Planta, 241, 1519–1528.

    Article  CAS  PubMed  Google Scholar 

  • Setter, T. L., & Waters, I. (2003). Review of prospects for germplasm improvement for waterlogging tolerance in wheat, barley and oats. Plant and Soil, 253, 1–34.

    Article  CAS  Google Scholar 

  • Shabaan, M. M. (2010). Role of Boron in plant nutrition and human health. American Journal of Plant Physiology, 5(5), 224–240.

    Article  Google Scholar 

  • Shah, N., & Paulsen, G. (2003). Interaction of drought and high temperature on photosynthesis and grain-filling of wheat. Plant and Soil, 257, 219–226.

    Article  CAS  Google Scholar 

  • Shahbaz, M., & Ashraf, M. (2013). Improving salinity tolerance in cereals. Critical Reviews in Plant Sciences, 32, 237–249.

    Article  Google Scholar 

  • Sharma, A., Gontia-Mishra, I., & Srivastava, A. K. (2011). Toxicity of heavy metals on germination and seedling growth of Salicornia brachiata. Journal of Phytology, 3, 33–36.

    CAS  Google Scholar 

  • Sharma, P., & Dubey, R. S. (2007). Involvement of oxidative stress and role of antioxidative defense system in growing rice seedlings exposed to toxic levels of aluminium. Plant Cell Reports, 26, 2027–2038.

    Article  CAS  PubMed  Google Scholar 

  • Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M. (2012). Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. Journal of Botany, 37, 1–26.

    Article  CAS  Google Scholar 

  • Sharma, P. K., Anand, P., Sankhalkar, S., & Shety, R. (1998). Photochemical and biochemical changes in wheat seedlings exposed to supplementary ultraviolet-B radiation. Plant Science, 132, 21–30.

    Article  CAS  Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2008). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14, 43–50.

    Article  PubMed  CAS  Google Scholar 

  • Shekari, F., Abbasi, A., & Mustafavi, S. H. (2015). Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. Journal of the Saudi Society of Agricultural Sciences. doi:10.1016/j.jssas.2015.11.006.

  • Shekari, L., Kamelmanesh, M. M., Mozafariyan, M., & Sadeghi, F. (2016). Role of selenium in mitigation of cadmium toxicity in pepper grown in hydroponic condition. Journal of Plant Nutrition. doi:10.1080/01904167.2016.1161773.

  • Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A. E., & Li, J. (2010). Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. Journal of Plant Physiology, 167, 1248–1252.

    Article  CAS  PubMed  Google Scholar 

  • Shi, Y., Zhang, Y., Han, W., Feng, R., Hu, Y., Guo, J., & Gong, H. (2016). Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science, 7, 196. doi:10.3389/fpls.2016.00196.

    PubMed  PubMed Central  Google Scholar 

  • Singh, R., Singh, S., Tripathi, R., & Agrawal, S. B. (2011). Supplemental UV-B radiation induced changes in growth, pigments and antioxidant pool of bean (Dolichos lablab) under field conditions. Journal of Environmental Biology, 32, 139–145.

    CAS  PubMed  Google Scholar 

  • Singh, R. K., & Flowers, T. J. (2010). Physiology and molecular biology of the effects of salinity on rice. In Handbook of plant and crop stress (pp. 899–939). Boca Raton: CRC Press.

    Google Scholar 

  • Song, A., Li, Z., Zhang, J., Xue, G., Fan, F., & Liang, Y. (2009). Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. Journal of Hazardous Materials, 172, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Soylemezoglu, G., Demir, K., Inal, A., & Gunes, A. (2009). Effect of silicon on antioxidant and stomatal response of two grapevine (Vitis Vinifera L.) rootstocks grown in boron toxic, saline and boron toxic-saline soil. Scientia Horticulturae, 123, 240–246.

    Article  CAS  Google Scholar 

  • Srivastava, M., Ma, L. Q., Rathinasabapathi, B., & Srivastava, P. (2009). Effects of selenium on arsenic uptake in arsenic hyperaccumulator Pteris vittata L. Bioresource Technology, 100, 1115–1121.

    Article  CAS  PubMed  Google Scholar 

  • Steffens, B., Geske, T., & Sauter, M. (2011). Aerenchyma formation in the rice stem and its promotion by H2O2. New Phytologist, 190, 369–378.

    Article  CAS  PubMed  Google Scholar 

  • Stone, P. J., & Nicolas, M. E. (1994). Wheat cultivars vary widely in their responses of grain yield and quality to short periods of post-anthesis heat stress. Australian Journal of Plant Physiology, 21, 887–900.

    Article  Google Scholar 

  • Sudhir, P., & Murthy, S. D. S. (2004). Effects of salt stress on basic processes of photosynthesis. Photosynthetica, 42, 481–486.

    Article  CAS  Google Scholar 

  • Sun, H. W., Ha, J., Liang, S. X., & Kang, W. J. (2010). Protective role of selenium on garlic growth under cadmium stress. Communications in Soil Science and Plant Analysis, 41, 1195–1204.

    Article  CAS  Google Scholar 

  • Sun, Q., Wang, X. R., Ding, S. M., & Yuan, X. F. (2005). Effects of exogenous organic chelators on phytochelatins production and its relationship with cadmium toxicity in wheat (Triticum aestivum L.) under cadmium stress. Chemosphere, 60, 2–31.

    Google Scholar 

  • Tadina, N., Germ, M., Kreft, I., Breznik, B., & Gaberščik, A. (2007). Effects of water deficit and selenium on common buckwheat (Fagopyrum esculentum Moench.) plants. Photosynthetica, 45, 472–476.

    Article  CAS  Google Scholar 

  • Taiz, L., & Zeiger, E. (2006). Stress physiology. In L. Taiz & E. Zeiger (Eds.), Plant physiology (5th ed., pp. 671–681). Sunderland: Sinauer Associates.

    Google Scholar 

  • Tavakkoli, E., Fatehi, F., Coventry, S., Rengasamy, P., & McDonald, G. K. (2011). Additive effects of Na+ and Cl ions on barley growth under salinity stress. Journal of Experimental Botany, 62, 2189–2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tavallali, V., Rahemi, M., & Eshghi, S. (2010). Zinc alleviates salt stress and increases antioxidant enzyme activity in the leaves of pistachio (Pistacia vera L. “Badami”) seedlings. Turkish Journal of Agriculture and Forestry, 34, 349–359. doi:10.3906/tar-0905-10.

    CAS  Google Scholar 

  • Terry, N., Zayed, A. M., de Souza, M. P., & Tarun, A. S. (2000). Selenium in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology, 51, 401–432.

    Article  CAS  PubMed  Google Scholar 

  • Thakur, P., Kumar, S., Malik, J. A., Berger, J. D., & Nayyar, H. (2010). Cold stress effects on reproductive development in grain crops, an overview. Environmental and Experimental Botany, 67, 429–443.

    Article  CAS  Google Scholar 

  • Thameur, A., Lachiheb, B., & Ferchichi, A. (2012). Drought effect on growth, gas exchange and yield, in two strains of local barley Ardhaoui, under water deficit conditions in southern Tunisia. Journal of Environmental Management, 113, 495–500. doi:10.1016/j.jenvman.2012.05.026.

    Article  CAS  PubMed  Google Scholar 

  • Thomashow, M. F. (1999). Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annual Review of Plant Physiology and Plant Molecular Biology, 50, 571–579.

    Article  CAS  PubMed  Google Scholar 

  • Tiryaki, I., & Keles, H. (2012). Reversal of the inhibitory effect of light and high temperature on germination of Phacelia tanacetifolia seeds by melatonin. Journal of Pineal Research, 52, 332–339.

    Article  CAS  PubMed  Google Scholar 

  • Tsukahara, K., Sawada, H., Kohno, Y., Matsuura, T., Mori, I. C., & Terao, T. (2015). Ozone-induced rice grain yield loss is triggered via a change in panicle morphology that is controlled by aberrant panicle organization 1 Gene. PloS One, 10, e0123308. doi:10.1371/journal.pone.0123308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Upadhyaya, H., Dutta, B. K., Sahoo, L., & Panda, S. K. (2012). Comparative effect of Ca, K, Mn and B on post-drought stress recovery in tea (Camellia sinensis L.) American Journal of Plant Sciences, 3, 443–460.

    Article  CAS  Google Scholar 

  • Vašková, J., Vasko, L., & Kron, I. (2012). Oxidative processes and antioxidative metaloenzymes. In M. A. El-Missiry (Ed.), Antioxidant enzyme. Rijeka: InTech. doi:10.5772/50995.

    Google Scholar 

  • Vorobets, N., & Mykiyevich, I. (2000). Single and combined effects of lead and selenium on sunflower seedlings. Scientific Workshop on Horticulture and Vegetable Growing, 19, 390.

    Google Scholar 

  • Vyšniauskienė, R., & Rančelienė, V. (2014). Effect of UV-B radiation on growth and antioxidative enzymes activity in Lithuanian potato (Solanum tuberosum L.) cultivars. Zemdirbyste-Agriculture, 101(1), 51–56. doi:10.13080/z-a.2014.101.007.

    Article  Google Scholar 

  • Wahid, A., Gelani, S., Ashraf, M., & Foolad, M. R. (2007). Heat tolerance in plants: An overview. Environmental and Experimental Botany, 61, 199–223.

    Article  Google Scholar 

  • Wang, C. Q., HJ, X., & Liu, T. (2011). Effect of selenium on ascorbate–glutathione metabolism during PEG-induced water deficit in Trifolium repens L. Journal of Plant Growth Regulation, 30, 436–444.

    Article  CAS  Google Scholar 

  • Wang, L. J., & Li, S. H. (2006). Salicylic acid-induced heat and cold tolerance in relation to Ca2+ homeostasis and antioxidant systems in young grape plants. Plan Sci, 170, 685–694.

    Google Scholar 

  • Wang, M., Xu, Q., Yu, J., & Yuan, M. (2010). The putative Arabidopsis zinc transporter ZTP29 is involved in the response to salt stress. Plant Molecular Biology, 73(4), 467–479.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S., Liang, D., Li, C., Hao, Y., Maa, F., & Shu, H. (2012). Influence of drought stress on the cellular ultrastructure and antioxidant system in leaves of drought tolerant and drought-sensitive apple rootstocks. Plant Physiology and Biochemistry, 51, 81–89.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W. X., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., & Mauzerall, D. L. (2004). Characterizing distributions of surface ozone and its impact on grain production in China, Japan and South Korea: 1990 and 2020. Atmospheric Environment, 38, 4383–4402.

    Article  CAS  Google Scholar 

  • Waraich, E. A., Ahmad, R., & Ashraf, M. Y. (2011a). Improving agricultural water use efficiency by nutrient management in crop plants. Acta Agriculturae Scandinavica Section B—Soil and Plant Science, 61, 291–304.

    Article  CAS  Google Scholar 

  • Waraich, E. A., Ahmad, R., & Saifullah. (2011b). Role of mineral nutrition in alleviation of drought stress in plants. Australian Journal of Crop Science, 5, 764–777.

    CAS  Google Scholar 

  • Wiebbecke, C. F., Graham, M. A., Cianzio, S. R., & Palmer, R. G. (2012). Day temperature influences themale-sterile locus ms9 in soybean. Crop Science, 52, 1503–1510.

    Article  Google Scholar 

  • Wilkinson, S., Mills, G., Illidge, R., & Davies, W. J. (2012). How is ozone pollution reducing our food supply? Journal of Experimental Botany, 63, 527–536.

    Article  CAS  PubMed  Google Scholar 

  • Wojtaszek, P. (1997). Oxidative burst: An early plant response to pathogen infection. Biochemical Journal, 322, 681–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, F., & Zhang, G. (2002). Alleviation of cadmium-toxicity by application of zinc and ascorbic acid in barley. Journal of Plant Nutrition, 25, 2745–2761. doi:10.1081/PLN-120015536.

    Article  CAS  Google Scholar 

  • Xiaoqin, Y., Jianzhou, C., & Guangyin, W. (2009a). Effects of drought stress and selenium supply on growth and physiological characteristics of wheat seedlings. Acta Physiologiae Plantarum, 31, 1031–1036.

    Article  CAS  Google Scholar 

  • Xiaoqin, Y., Jianzhou, C., & Guangyin, W. (2009b). Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research, 130, 283–290.

    Article  CAS  Google Scholar 

  • Xue, Z. Y., DY, Z., Xue, G. P., Zhang, H., Zhao, Y. X., & Xia, G. M. (2004). Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Science, 167, 849–859.

    Article  CAS  Google Scholar 

  • Yadav, S. K. (2010). Cold stress tolerance mechanisms in plants: A review. Agronomy for Sustainable Development, 30, 515–527.

    Article  CAS  Google Scholar 

  • Yamaguchi, T., & Blumwald, E. (2005). Developing salt-tolerant crop plants: Challenges and opportunities. Trends in Plant Science, 10(12), 615–620.

    Article  CAS  PubMed  Google Scholar 

  • Yan, K., Chen, W., He, X., Zhang, G., Xu, S., & Wang, L. (2010). Responses of photosynthesis, lipid peroxidation and antioxidant system in leaves of Quercus mongolica to elevated O3. Environmental and Experimental Botany, 69, 198–204.

    Article  CAS  Google Scholar 

  • Yao, X., Chu, J., & Ba, C. (2010). Responses of wheat roots to exogenous selenium supply under enhanced ultraviolet-B. Biological Trace Element Research, 137, 244–252.

    Article  CAS  PubMed  Google Scholar 

  • Yao, X., Chu, J., & Wang, G. (2009). Effects of selenium on wheat seedlings under drought stress. Biological Trace Element Research, 130, 283–290.

    Article  CAS  PubMed  Google Scholar 

  • Yildiztugay, E., Ozfidan-Konakci, C., Kucukoduk, M., & Tekis, S. A. (2016). The impact of selenium application on enzymatic and non-enzymatic antioxidant systems in Zea mays roots treated with combined osmotic and heat stress. Archives of Agronomy and Soil Science. doi:10.1080/03650340.2016.1201810.

  • Yordanova, R., & Popova, L. (2007). Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. General and Applied Plant Physiology, 33, 155–170.

    CAS  Google Scholar 

  • Yoshida, S. (1981). Physiological analysis of rice yield. In Fundamentals of rice crop science (pp. 231–251). Los Banos: International Rice Research Institute.

    Google Scholar 

  • Yoshioka, M., Uchida, S., Mori, H., Komayama, K., Ohira, S., Morita, N., Nakanishi, T., & Yamamoto, Y. (2006). Quality control of photosystem II: Cleavage of reaction center D1 protein in spinach thylakoids by FtsH protease under moderate heat stress. The Journal of Biological Chemistry, 281, 21660–21669.

    Article  CAS  PubMed  Google Scholar 

  • You, L., Rosegrant, M. W., Wood, S., & Sun, D. (2009). Impact of growing season temperature on wheat productivity in China. Agricultural and Forest Meteorology, 149, 1009–1014.

    Article  Google Scholar 

  • Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17, 145–256.

    Article  CAS  Google Scholar 

  • Yue, M., Li, Y., & Wang, X. (1998). Effects of enhanced ultraviolet-B radiation on plant nutrients and decomposition of spring wheat under field conditions. Environmental and Experimental Botany, 40, 187–196.

    Article  CAS  Google Scholar 

  • Zabihi-e-mahmoodabad, R., Jamaati-e-somarin, S., Khayatnezhad, M., & Gholamin, R. (2011). Effect of cold stress on germination and growth of wheat cultivars. Advances in Environmental Biology, 5, 94–97.

    Google Scholar 

  • Zahedi, H., Noormohammadi, G., Rad, A. H. S., Habibi, D., & Boojar, M. M. A. (2009). Effect of zeolite and foliar application of selenium on growth, yield and yield component of three canola cultivar under conditions of late season drought stress. Notulae Scientia Biologicae, 1, 73–80.

    CAS  Google Scholar 

  • Zeng, F. R., Zhao, F. S., Qiu, B. Y., Ouyang, Y. N., Wu, F. B., & Zhang, G. P. (2011). Alleviation of chromium toxicity by silicon addition in rice plants. Agricultural Sciences in China, 10, 1188–1196.

    Article  CAS  Google Scholar 

  • Zhang, B., Liu, W., Chang, S. X., & Anyia, A. O. (2010). Water deficit and high temperature affected water use efficiency and arabinoxylan concentration in spring wheat. Journal of Cereal Science, 52, 263–269.

    Article  CAS  Google Scholar 

  • Zhang, J. H., Huang, W. D., Liu, Y. P., & Pan, Q. H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross-temperature stresses. Journal of Integrative Plant Biology, 47, 959–970.

    Article  Google Scholar 

  • Zhou, X., Yang, L., Qi, Y., Guo, P., & Chen, L. (2015). Mechanisms on boron-induced alleviation of aluminum-toxicity in Citrus grandis seedlings at a transcriptional level revealed by cDNA-AFLP analysis. PloS One, 10(3), e0115485. doi:10.1371/journal.pone.0115485.

  • Zhu, J. K. (2007). Plant salt stress. In A. O’Daly (Ed.), Encyclopedia of life sciences (pp. 1–3). Chichester: Wiley.

    Google Scholar 

  • Zlatev, Z., & Lidon, F. J. C. (2012). An overview on drought induced changes in plant growth, water relations and photosynthesis. Emirates Journal of Food and Agriculture, 24, 57–72.

    Article  Google Scholar 

  • Zlatev, Z. S., Lidon, F. J. C., & Kaimakanova, M. (2010). Plant physiological responses to UV-B radiation. Emirates Journal of Food and Agriculture, 24, 481–501.

    Article  Google Scholar 

Download references

Acknowledgments

At the very first the authors wish to thank Taufika Islam Anee, Tasnim Farha Bhuiyan, and Mazhar Ul Alam, Laboratory of Plant Stress Responses and Faculty of Agriculture, Kagawa University, Japan, for their critical readings and suggestions in improving the manuscript. We are also highly thankful to Mr. Md. Rumainul Islam, Environmental Engineering Program, Chongqing University, China, for providing us several supporting articles. The first author acknowledges Japan Society for the Promotion of Science (JSPS) for funding in his research. As page limitation precluded us from citing a large number of studies, we apologize to those whose original publications are therefore not directly referenced in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirza Hasanuzzaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hasanuzzaman, M. et al. (2017). Actions of Biological Trace Elements in Plant Abiotic Stress Tolerance. In: Naeem, M., Ansari, A., Gill, S. (eds) Essential Plant Nutrients. Springer, Cham. https://doi.org/10.1007/978-3-319-58841-4_10

Download citation

Publish with us

Policies and ethics