Skip to main content

Pupil Light Reflex Mitigation Using Non-linear Image Warping

  • Conference paper
  • First Online:
Pattern Recognition and Image Analysis (IbPRIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10255))

Included in the following conference series:

  • 1835 Accesses

Abstract

The human iris is one of the most reliable biometric features. Since it is a live organ, variations caused by pupil contraction/dilation will degrade the performance of a biometric system based on iris. This paper presents a method for generating images of irises with a specific dilation coefficient. The approach presented here uses a mathematical model that aims to emulate the dynamic of the iris with respect to the pupil dilation/contraction. The estimated images are generated using image an image warping technique. The iris image is approximated by re-mapping the radius of the polar coordinates using a nonlinear function. The proposed method benefits of low complexity and provides better results with respect to the photorealistic aspect and to the performance of iris biometric systems. The performance of the proposed model applied to the iris as a biometric system is tested using a commercial iris recognition system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burge, M.J., Bowyer, K.W. (eds.): Handbook of Iris Recognition. Springer, New York (2013)

    Google Scholar 

  2. Wildes, R.P.: Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  3. Daugman, J.: The importance of being random: statistical principles of iris recognition. Pattern Recogn. 36, 279–291 (2003)

    Article  Google Scholar 

  4. Matey, J.R., Tabassi, E., Quinn, G.W., Chumakov, M.: IREX VI temporal stability of iris recognition accuracy NIST interagency report 7948. Technical report, NIST (2013)

    Google Scholar 

  5. Bowyer, K.W., Ortiz, E.: Iris recognition: does template ageing really exist? Biometric Technol. Today 2015(10), 5–8 (2015)

    Article  Google Scholar 

  6. Hollingsworth, K.P., Bowyer, K.W., Flynn, P.J.: The importance of small pupils: a study of how pupil dilation affects iris biometrics. In: IEEE 2nd International Conference on Biometrics Theory, Applications and Systems, pp. 1–6 (2008)

    Google Scholar 

  7. Pamplona, V.F., Oliveira, M.M.: Photorealistic models for pupil light reflex and iridal pattern deformation. ACM Trans. Graph. 28(4), 1–12 (2009)

    Article  Google Scholar 

  8. Ortiz, E., Bowyer, K.W., Flynn, P.J.: Dilation-aware enrolment for iris recognition. IET Biometrics 5, 92–99 (2016)

    Google Scholar 

  9. Martins, R., Gonzaga, A.: Dynamic features for iris recognition. IEEE Trans. Syst. Man Cybern. B Cybern. 42(4), 1072–1082 (2012)

    Article  Google Scholar 

  10. Thavalengal, S., Andorko, I., Drimbarean, A., Bigioi, P., Corcoran, P.: Proof-of-concept and evaluation of a dual function visible/NIR camera for iris authentication in smartphones. IEEE Trans. Commun. El. 61(2), 137–143 (2015)

    Google Scholar 

  11. Thavalengal, S., Corcoran, P.: User authentication on smartphones: focusing on iris biometrics. IEEE Consum. Electr. Mag. 5(2), 87–93 (2016)

    Article  Google Scholar 

  12. Thornton, J., Savvides, M.: A bayesian approach to deformed pattern matching of iris images. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 596–606 (2007)

    Article  Google Scholar 

  13. Tomeo-Reyes, V., Ross, A., Clark, A.D., Chandran, V.: A biomechanical approach to iris normalization. In: Proceedings of 2015 International Conference on Biometrics, pp. 9–16 (2015)

    Google Scholar 

  14. Wyatt, H.J.: A ‘minimum-wear-and-tear’ meshwork for the iris. Vis. Res. 40, 2167–2176 (2000)

    Article  Google Scholar 

  15. Yuan, X., Shi, P.: A non-linear normalization model for iris recognition. In: Li, S.Z., Sun, Z., Tan, T., Pankanti, S., Chollet, G., Zhang, D. (eds.) IWBRS 2005. LNCS, vol. 3781, pp. 135–141. Springer, Heidelberg (2005). doi:10.1007/11569947_17

    Chapter  Google Scholar 

  16. Wei, Z., Tan, T., Sun, Z.: Nonlinear iris deformation correction based on gaussian model. In: Lee, S.-W., Li, S.Z. (eds.) ICB 2007. LNCS, vol. 4642, pp. 780–789. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74549-5_82

    Chapter  Google Scholar 

  17. Hasegawa, R., Ortiz, E., Bowyer, K.W., Stark, L., Flynn, P.J., Hughes, K.: Synthetic eye images for pupil dilation mitigation. In: Fifth IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS), pp. 339–345 (2012)

    Google Scholar 

  18. Zhang, M., Sun, Z., Tan, T.: Deformable DAISY matcher for robust iris recognition. In: 18th IEEE International Conference on Image Processing, pp. 3250–3253 (2011)

    Google Scholar 

  19. Fathima, S., Golash, R.: An efficient method for deformed iris recognition by extracting hybrid features. In: AIT Tumkur, India, vol. 3, no. 4, pp. 741–746 (2014)

    Google Scholar 

  20. Zhang, M., Sun, Z., Tan, T.: Deformed iris recognition using bandpass geometric features and lowpass ordinal features. In: International Conference on Biometrics (ICB), pp. 1–6 (2013)

    Google Scholar 

  21. Thainimit, S., Alexandre, L.A., De Almeida, V.M.N.: Iris surface deformation and normalization. In: 13th International Symposium on Communications and Information Technologies: Communication and Information Technology for New Life Style Beyond Cloud, ISCIT 2013, pp. 501–506 (2013)

    Google Scholar 

  22. Daugman, J.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  23. Tola, E., Lepetit, V., Fua, P.: DAISY: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 32(5), 815–830 (2010)

    Article  Google Scholar 

  24. Phang, S.S.: Investigating and developing a model for iris changes under varied lighting conditions. In: IEEE Transactions on Pattern Analysis and Machine Intelligence Master Thesis, Queensland University of Technology (2007)

    Google Scholar 

  25. OpenCV documentation. http://docs.opencv.org/2.4/doc

  26. Rakshit, S., Monro, D.M.: Pupil shape description using fourier series. In: IEEE Workshop on Signal Processing Applications for Public Security and Forensics, pp. 1–4 (2007)

    Google Scholar 

  27. Rakshit, S.: Novel methods for accurate human iris recognition. Ph.D. thesis, University of Bath (2007)

    Google Scholar 

  28. Smart Sensors Ltd., MIRLIN SDK, version 2.23 (2013)

    Google Scholar 

Download references

Acknowledgments

This research is funded by the Enterprise Based Programme (EBP) of the Irish Research Council (www.research.ie).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tudor Nedelcu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Nedelcu, T., Thavalengal, S., Costache, C., Corcoran, P. (2017). Pupil Light Reflex Mitigation Using Non-linear Image Warping. In: Alexandre, L., Salvador Sánchez, J., Rodrigues, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2017. Lecture Notes in Computer Science(), vol 10255. Springer, Cham. https://doi.org/10.1007/978-3-319-58838-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58838-4_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58837-7

  • Online ISBN: 978-3-319-58838-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics