Skip to main content

Two-Degree-of-Freedom Oscillator

  • Chapter
  • First Online:
  • 1985 Accesses

Part of the book series: Mathematical Engineering ((MATHENGIN))

Abstract

Nowadays, an enormous interest in investigating of vibrations of two mass systems with two degrees of freedom is shown.

This is a preview of subscription content, log in via an institution.

References

  • Abe, Y., & Kato, N. (2013). Complex earthquake cycle simulations using a two-degree-of-freedom spring-block model with a rate- and state-friction law. Pure and Applied Geophysics, 170, 745–765.

    Article  Google Scholar 

  • Abramowitz, M., & Stegun, I. A. (1979). Handbook of mathematical functions with formulas, graphs and mathematical tables. Moscow: Nauka. (in Russian).

    MATH  Google Scholar 

  • Afsharfard, A., & Farshidianfar, A. (2012). Design of nonlinear impact dampers based on acoustic and damping behavior. International Journal of Mechanical Sciences, 65, 125–133.

    Article  MATH  Google Scholar 

  • Alabudzev, P., Grichin, A., Kim, L., Migirenko, G., Chon, V., & Stepanov, P. (1989). Vibration protecting and measuring systems with quasi-zero stiffness. New York: Hemisphere Publishing.

    Google Scholar 

  • Araky, Y., Asai, T., & Masui, T. (2010). Vertical vibration isolator having piecewise-constant restoring force. Earthquake Engineering Structural Dynamics, 38, 1505–1523.

    Article  Google Scholar 

  • Bogolubov, N. N., & Mitropolski, Y. A. (1963). Asimptoticheskie metodi v teorii nelinejnih kolebanij. Moscow: Fiz.mat.giz.

    Google Scholar 

  • Bondar, N. G. (1978). Nonlinear vibrations excited by impulses. Kiev-Doneck: Visca skola. (in Russian).

    Google Scholar 

  • Burns, D. M., & Bright, V. M. (1997). Nonlinear flexures for stable deflection of an electrostatically actuated micromirror. In Proceedings of SPIE: Microelectronics structures and MEMS for optical processing III (vol. 3226, pp. 125–135).

    Google Scholar 

  • Byrd, P. F., & Friedman, M. D. (1954). Handbook of elliptic integrals for engineers and physicists. Berlin: Springer.

    Book  MATH  Google Scholar 

  • Carela, A., Brennan, M. J., & Waters, T. P. (2007). Static analysis of a passive vibration isolator with quasi-zero stiffness characteristic. Journal of Sound and Vibration, 301, 678–689.

    Article  Google Scholar 

  • Cortopassi, C., & Englander, O. (2010). Nonlinear springs for increasing the maximum stable deflection of MEMS electrostatic gap closing actuators. Berkeley: University of Berkeley.

    Google Scholar 

  • Cveticanin, L. (1988). The stability of a textile machine rotor with increasing mass. Mechanism and Machine Theory, 23, 275–278.

    Article  Google Scholar 

  • Cveticanin, L. (1992b). Approximate analytical solutions to a class of non-linear equations with complex functions. Journal of Sound and Vibration, 157, 289–302.

    Article  MATH  Google Scholar 

  • Cveticanin, L. (1993). An asymptotic solution for weak nonlinear vibrations of the rotor. Mechanism and Machine Theory, 28, 495–505.

    Article  Google Scholar 

  • Cveticanin, L. (1998a). Some particular solutions which describe the motion of the rotor. Journal of Sound and Vibration, 212, 173–178.

    Article  Google Scholar 

  • Cveticanin, L. (1998b). Analytical methods for solving strongly non-linear differential equations. Journal of Sound and Vibration, 214, 325–338.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2001a). Analytic approach for the solution of the complex valued strong non-linear differential equation of Duffing type. Physica A, 297, 348–360.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2001b). Analytic solutions of the system of two coupled pure cubic non-linear oscillators equations. Journal of Sound and Vibration, 245, 571–580.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2001c). Vibrations of a coupled two-degree-of-freedom system. Journal of Sound and Vibration, 247, 279–292.

    Article  Google Scholar 

  • Cveticanin, L. (2002). The motion of a two mass system with non-linear connection. Journal of Sound and Vibration, 252, 361–369.

    Article  Google Scholar 

  • Cveticanin, L. (2003). Forced non-linear vibrations of a symmetrical two-mass system. Journal of Sound and Vibration, 265, 451–458.

    Article  Google Scholar 

  • Cveticanin, L. (2004a). A new approach for solving of a complex-valued differential equation. Journal of Sound and Vibration, 278, 1181–1195.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2004b). Free vibration of a strong non-linear system described with complex function. Journal of Sound and Vibration, 277, 815–824.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2004c). Vibrations of a free two-mass system with quadratic non-linearity and a constant excitation force. Journal of Sound and Vibration, 270, 441–449.

    Article  Google Scholar 

  • Cveticanin, L. (2005). Approximate solution of a strongly non-linear complex differential equation. Journal of Sound and Vibration, 284, 503–512.

    Article  MathSciNet  MATH  Google Scholar 

  • Cveticanin, L. (2012). Review on mathematical and mechanical models of the vocal cord. Journal of Applied Mathematics, Article ID 928591, 18 pages.

    Google Scholar 

  • Cveticanin, L. (2015). A solution procedure based on the Ateb function for a two-degree-of-freedom oscillator. Journal of Sound and Vibration, 346(1), 298–313.

    Article  Google Scholar 

  • Cveticanin, L., & Pogany, T. (2012). Oscillator with a sum of non-integer order non-linearities. Journal of Applied Mathematics, Art. no. 649050, 20 pages.

    Google Scholar 

  • Dimentberg, F. M. (1959). Izgibnije kolabanija vrashchajushihsja valov. Moscow: Izd. Akad. Nauk SSSR.

    Google Scholar 

  • Gatti, G., Kovacic, I., & Brennan, M. J. (2010). On the response of a harmonically excited two degree-of-freedom system consisting of linear and nonlinear quasi-zero stiffness oscillators. Journal of Sound and Vibration, 329, 823–835.

    Article  Google Scholar 

  • Genin, J., & Maybee, J. S. (1970). External and material damped three dimensional rotor system. International Journal of Non-linear Mechanics, 5, 287–297.

    Article  MathSciNet  MATH  Google Scholar 

  • Heris, H. K., Miri, A. K., Tripathy, U., Barthelat, F., & Mongeau, L. (2013). Nanoindentation of poroviscoelastic vocal fold tissue using an atomic force microscope. Journal of the Mechanical Behavior of Biomedical Materials, 28, 383–392.

    Article  Google Scholar 

  • Ishizaka, K., & Flangan, J. L. (1972). Synthesis of voiced sounds from a tw-mass model of the vocal cords. The Bell System Technical Journal, 51(6), 1233–1252.

    Article  Google Scholar 

  • Jones, T. B., & Nenadic, N. G. (2013). Electromechanics and MEMS. New York: Cambridge University Press.

    Book  Google Scholar 

  • Kovacic, I., Brennan, M. J., & Waters, T. P. (2008). A study of a non-linear vibration isolator with quasi-zero stiffness characteristic. Journal of Sound and Vibration, 315, 700–711.

    Article  Google Scholar 

  • Krylov, N., & Bogolubov, N. (1943). Introduction to Nonlinear Mechanics. Princeton: Princeton University Press.

    Google Scholar 

  • Kucab, K., Gorski, G., & Mizia, J. (2013). Energy harvesting in the nonlinear two-masses piezoelasic system driven by harmonic excitations. The European Physical Journal—Special Topics, 222, 1607–1616.

    Article  Google Scholar 

  • Maccari, A. (2003). Periodic and quasiperioidc motion for complex nonlinear systems. International Journal of Non-linear Mechanics, 38, 575–584.

    Article  MATH  Google Scholar 

  • Machado, L. G., Savi, M. A., & Pacheco, P. M. C. L. (2013). Nonlinear dynamics and chaos in coupled shape memory oscillators. International Journal of Solids and Structures, 40, 5139–5156.

    Article  MATH  Google Scholar 

  • Mahmoud, G. M. (1998). Approximate solutions of a class of complex nonlinear dynamical systems. Physica A, 253, 211–222.

    Article  Google Scholar 

  • Mahmoud, G. M., & Shaban, A. H. A. (2000). On periodic solutions of parametrically excited complex non-linear dynamical systems. Physica A, 278, 390–404.

    Article  Google Scholar 

  • Manasevich, R., Mawhin, J., & Zanolin, F. (1999). Periodic solutions of some complex-valued Liénard and Rayleigh equations. Nonlinear Analysis, 36, 997–1014.

    Article  MathSciNet  MATH  Google Scholar 

  • Mergel, P., Herzel, H., & Titze, I. R. (2000). Irregular vocal fold vibration—High-speed observation and modeling. Journal of Acoustics Society of America, 108, 2996–3002.

    Article  Google Scholar 

  • Muszynska, A. (1976). On rotor dynamics. Warszaw: PAN.

    MATH  Google Scholar 

  • Nayfeh, A. H., & Mook, D. T. (1979). Nonlinear Oscillations. New York: Wiley.

    MATH  Google Scholar 

  • Pham, T. T., Lamarque, C. H., & Pernot, S. (2011). Passive control of one degree of freedom nonlinear quadratic oscillator under combination resonance. Communications in Nonlinear Science and Numerical Simulations, 16, 2279–2288.

    Article  MathSciNet  MATH  Google Scholar 

  • Pilipchuk, V. N. (2007). Strongly nonlinear vibration of damped oscillators with two nonsmooth limits. Journal of Sound and Vibration, 302, 398–402.

    Article  MathSciNet  MATH  Google Scholar 

  • Pilipchuk, V. N. (2010). Nonlinear dynamics: Between linear and impact limits. New York: Springer.

    Book  MATH  Google Scholar 

  • Polo, M. F. P., Molina, M. P., & Chica, J. G. (2009). Chaotic dynamic and control for micro-electro-mechanical systems of massive storage with harmonic base excitation. Chaos, Solitons and Fractals, 39, 1356–1370.

    Article  MATH  Google Scholar 

  • Polo, M. F. P., Molina, M. P., & Chica, J. G. (2010). Self-oscillations and chaotic dynamic of a nonlinear controlled nano-oscillator. Journal of Computational and Theoretical Nanoscience, 7, 2463–2477.

    Article  Google Scholar 

  • Rosenberg, R. M. (1963). The Ateb(h)-functions and their properties. Quarterly of Applied Mathematics, 21, 37–47.

    Article  MathSciNet  MATH  Google Scholar 

  • Sarkar, B. C., Dandapathak, M., Sarkar, S., & Banerjee, T. (2013). Studies on the dynamics of two bilaterally coupled periodic gunn oscillators using Melnikov technique. Progress in Electromagnetics Research M, 28, 213–228.

    Article  Google Scholar 

  • Snamina, J., & Orkisz, P. (2014). Energy harvesting from vibrations of a two-degree-of-freedom mechanical system. Acta Physica Polonica A, 125(4–A), A-174–A-178.

    Article  Google Scholar 

  • Sugiura, T., Hori, T., & Kawamura, Y. (2014). Synchronization of coupled stick-slip oscillators. Nonlinear Processes in Geophysics, 21, 251–267.

    Article  Google Scholar 

  • Tondl, A. (1979). Avtokolebanija mehanicheskih sistem. Moscow: Mir. (in Russian).

    Google Scholar 

  • Vakakis, A. F., & Rand, R. H. (1992a). Normal modes and global dynamics of a two-degree-of-freedom non-linear system. Part I: low energies. International Journal of Non-linear Mechanics, 27, 861–874.

    Article  MathSciNet  MATH  Google Scholar 

  • Vakakis, A. F., & Rand, R. H. (1992b). Normal modes and global dynamics of a two-degree-of-freedom non-linear system. Part II: high energies. International Journal of Non-linear Mechanics, 27, 875–889.

    Article  MathSciNet  MATH  Google Scholar 

  • Vance, J. M. (1988). Rotor dynamics of turbomachinery. New York: Wiley.

    Google Scholar 

  • Wan, N., Peng, D. D., Sun, M., & Zhang, D. (2013). Nonlinear oscillation of pathological vocal folds during vocalization. Science China: Physics, Mechanics and Astronomy, 56(7), 1324–1328.

    Google Scholar 

  • Welte, J., Kniffka, T. J., & Ecker, H. (2013). Parameteric excitation in a two degree of freedom MEMS system. Shock and Vibration, 20, 1113–1124.

    Article  Google Scholar 

  • Xing, J. T., Xiong, Y. P., & Price, W. G. (2005). Passive active vibration isolation systems to produce zero of infinite dynamic modulus: Theoretical and conceptual design strategies. Journal of Sound and Vibration, 286, 615–636.

    Article  Google Scholar 

  • Xiong, Y. P., Xing, J. T., & Price, W. G. (2005). Interactive power flow characteristics of an integrated equipment—Nonlinear isolator—Travelling flexible ship excited by sea waves. Journal of Sound and Vibration, 287, 245–276.

    Article  Google Scholar 

  • Zhu, Q., & Ishitoby, M. (2004). Chaos and bifurcations in a nonlinear vehicle model. Journal of Sound and Vibration, 275, 1136–1146.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Livija Cveticanin .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cveticanin, L. (2018). Two-Degree-of-Freedom Oscillator. In: Strong Nonlinear Oscillators. Mathematical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-58826-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58826-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58825-4

  • Online ISBN: 978-3-319-58826-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics