Skip to main content

Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry

  • Chapter
  • First Online:
Book cover Phosphodiesterases: CNS Functions and Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 17))

Abstract

The basal ganglia are a forebrain network of interconnected nuclei that are involved in action selection, reward circuits and coordinating movement. PDE10A inhibition has been proposed as a novel way to modulate basal ganglia circuitry and to ameliorate symptoms in Huntington’s disease, Parkinson’s disease and Schizophrenia. However, despite encouraging results from pre-clinical models, PDE10A inhibitors failed to show efficacy as an antipsychotic in several clinical trials. PDE10A is expressed in the medium spiny neurons of the striatum and works to limit cyclic nucleotide signaling in response to modulatory neurotransmitters like dopamine. In this chapter, we will review the current literature on PDE10A and discuss how inhibition of PDE10A will result in alterations of the basal ganglia circuitry at the biochemical, physiological and behavioral level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad R, Bourgeois S, Postnov A, Schmidt ME, Bormans G, Van Laere K, Vandenberghe W. PET imaging shows loss of striatal PDE10A in patients with Huntington disease. Neurology. 2014;82:279–81.

    Article  PubMed  Google Scholar 

  • Bateup HS, Svenningsson P, Kuroiwa M, Gong S, Nishi A, Heintz N, Greengard P. Cell type–specific regulation of DARPP-32 phosphorylation by psychostimulant and antipsychotic drugs. Nat Neurosci. 2008;11:932–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaulieu J-M, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev. 2011;63:182–217.

    Article  CAS  PubMed  Google Scholar 

  • Beavo JA, Brunton LL. Cyclic nucleotide research — still expanding after half a century. Nat Rev Mol Cell Biol. 2002;3:710–8.

    Article  CAS  PubMed  Google Scholar 

  • Beavo JA, Francis SH, Houslay MD. Cyclic nucleotide phosphodiesterases in health and disease. Boca Raton: CRC Press; 2010.

    Google Scholar 

  • Bleickardt CJ, Kazdoba TM, Jones NT, Hunter JC, Hodgson RA. Antagonism of the adenosine A2A receptor attenuates akathisia-like behavior induced with MP-10 or aripiprazole in a novel non-human primate model. Pharmacol Biochem Behav. 2014;118:36–45.

    Article  CAS  PubMed  Google Scholar 

  • Bock R, Shin JH, Kaplan AR, Dobi A, Markey E, Kramer PF, Gremel CM, Christensen CH, Adrover MF, Alvarez VA. Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat Neurosci. 2013;16:632–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chappie TA, Helal CJ, Hou X. Current landscape of phosphodiesterase 10A (PDE10A) inhibition. J Med Chem. 2012;55:7299–331.

    Article  CAS  PubMed  Google Scholar 

  • Charych EI, Brandon NJ. Molecular and cellular understanding of PDE10A: a dual-substrate phosphodiesterase with therapeutic potential to modulate basal ganglia function. In: Brandon NJ, West AR, editors. Cyclic-nucleotide phosphodiesterases in the central nervous system. New York: Wiley; 2014. p. 247–68.

    Chapter  Google Scholar 

  • Charych EI, Jiang L-X, Lo F, Sullivan K, Brandon NJ. Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia. J Neurosci. 2010;30:9027–37.

    Article  CAS  PubMed  Google Scholar 

  • Chevalier G, Vacher S, Deniau JM, Desban M. Disinhibition as a basic process in the expression of striatal functions. I. The striato-nigral influence on tecto-spinal/tecto-diencephalic neurons. Brain Res. 1985;334:215–26.

    Article  CAS  PubMed  Google Scholar 

  • Cléry-Melin M-L, Schmidt L, Lafargue G, Baup N, Fossati P, Pessiglione M. Why don’t you try harder? An investigation of effort production in major depression. PLoS One. 2011;6:e23178.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coskran TM, Morton D, Menniti FS, Adamowicz WO, Kleiman RJ, Ryan AM, Strick CA, Schmidt CJ, Stephenson DT. Immunohistochemical localization of phosphodiesterase 10A in multiple mammalian species. J Histochem Cytochem. 2006;54:1205–13.

    Article  CAS  PubMed  Google Scholar 

  • Cramer H, Warter JM, Renaud B. Analysis of neurotransmitter metabolites and adenosine 3′,5′-monophosphate in the CSF of patients with extrapyramidal motor disorders. Adv Neurol. 1984;40:431–5.

    CAS  PubMed  Google Scholar 

  • Dani JA, Zhou F-M. Selective dopamine filter of glutamate striatal afferents. Neuron. 2004;42:522–4.

    Article  CAS  PubMed  Google Scholar 

  • Delnomdedieu M. PDE10Ai in Huntington’s Disease Program: A8241016 clinical trial update. Palm Springs, CA, USA; 2016.

    Google Scholar 

  • DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol. 2007;64:20–4.

    Article  PubMed  Google Scholar 

  • DeMarch Z, Giampà C, Patassini S, Martorana A, Bernardi G, Fusco FR. Beneficial effects of rolipram in a quinolinic acid model of striatal excitotoxicity. Neurobiol Dis. 2007;25:266–73.

    Article  CAS  PubMed  Google Scholar 

  • DeMarch Z, Giampà C, Patassini S, Bernardi G, Fusco FR. Beneficial effects of rolipram in the R6/2 mouse model of Huntington’s disease. Neurobiol Dis. 2008;30:375–87.

    Article  CAS  PubMed  Google Scholar 

  • DeMartinis N, Banerjee A, Kumar V, Boyer S, Schmidt C, Arroyo S. Poster #212. Results of a phase 2A proof-of-concept trial with a PDE10A inhibitor in the treatment of acute exacerbation of schizophrenia. Schizophr Res. 2012;136:S262.

    Article  Google Scholar 

  • Deniau JM, Chevalier G. Disinhibition as a basic process in the expression of striatal functions. II. The striato-nigral influence on thalamocortical cells of the ventromedial thalamic nucleus. Brain Res. 1985;334:227–33.

    Article  CAS  PubMed  Google Scholar 

  • Diggle CP, Sukoff Rizzo SJ, Popiolek M, Hinttala R, Schülke J-P, Kurian MA, Carr IM, Markham AF, Bonthron DT, Watson C, et al. Biallelic mutations in PDE10A lead to loss of striatal PDE10A and a hyperkinetic movement disorder with onset in infancy. Am J Hum Genet. 2016;98:735–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dolgin E. Massive schizophrenia genomics study offers new drug directions. Nat Rev Drug Discov. 2014;13:641–2.

    Article  CAS  PubMed  Google Scholar 

  • Dunlop J, Brandon NJ. Schizophrenia drug discovery and development in an evolving era: are new drug targets fulfilling expectations? J Psychopharmacol (Oxf). 2015;29:230–8.

    Article  CAS  Google Scholar 

  • Ellenbroek AA, Hesterkamp T, Hallett DJ. Parkinson’s disease. Investigation of PDE10a Inhibitors for Parkinsons Disease.PI is Bart Ellenbroek; 2010.

    Google Scholar 

  • Ena SL, Backer J-FD, Schiffmann SN, d’Exaerde A d K. FACS array profiling identifies Ecto-5′ nucleotidase as a striatopallidal neuron-specific gene involved in striatal-dependent learning. J Neurosci. 2013;33:8794–809.

    Article  CAS  PubMed  Google Scholar 

  • Endoh M, Hori M. Acute heart failure: inotropic agents and their clinical uses. Expert Opin Pharmacother. 2006;7:2179–202.

    Article  CAS  PubMed  Google Scholar 

  • Fienberg AA, Hiroi N, Mermelstein PG, Song W-J, Snyder GL, Nishi A, Cheramy A, O’Callaghan JP, Miller DB, Cole DG, et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science. 1998;281:838–42.

    Article  CAS  PubMed  Google Scholar 

  • Francis SH, Blount MA, Corbin JD. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol Rev. 2011;91:651–90.

    Article  CAS  PubMed  Google Scholar 

  • Fujishige K, Kotera J, Omori K. Striatum- and testis-specific phosphodiesterase PDE10A isolation and characterization of a rat PDE10A. Eur J Biochem. 1999;266:1118–27.

    Article  CAS  PubMed  Google Scholar 

  • García AM, Redondo M, Martinez A, Gil C. Phosphodiesterase 10 inhibitors: new disease modifying drugs for Parkinson’s disease? Curr Med Chem. 2014;21:1171–87.

    Article  PubMed  CAS  Google Scholar 

  • Gavaldà A, Roberts RS. Phosphodiesterase-4 inhibitors: a review of current developments (2010–2012). Expert Opin Ther Pat. 2013;23:997–1016.

    Article  PubMed  CAS  Google Scholar 

  • Gentzel RC, Toolan D, Roberts R, Koser AJ, Kandebo M, Hershey J, Renger JJ, Uslaner J, Smith SM. The PDE10A inhibitor MP-10 and haloperidol produce distinct gene expression profiles in the striatum and influence cataleptic behavior in rodents. Neuropharmacology. 2015;99:256–63.

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization. Trends Neurosci. 1992;15:133–9.

    Article  CAS  PubMed  Google Scholar 

  • Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci. 2011;34:441–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gertler TS, Chan CS, Surmeier DJ. Dichotomous anatomical properties of adult striatal medium spiny neurons. J Neurosci. 2008;28:10814–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giampà C, DeMarch Z, D’Angelo V, Morello M, Martorana A, Sancesario G, Bernardi G, Fusco FR. Striatal modulation of cAMP-response-element-binding protein (CREB) after excitotoxic lesions: implications with neuronal vulnerability in Huntington’s disease. Eur J Neurosci. 2006;23:11–20.

    Article  PubMed  Google Scholar 

  • Giampà C, Patassini S, Borreca A, Laurenti D, Marullo F, Bernardi G, Menniti FS, Fusco FR. Phosphodiesterase 10 inhibition reduces striatal excitotoxicity in the quinolinic acid model of Huntington’s disease. Neurobiol Dis. 2009;34:450–6.

    Article  PubMed  CAS  Google Scholar 

  • Giampà C, Laurenti D, Anzilotti S, Bernardi G, Menniti FS, Fusco FR. Inhibition of the striatal specific phosphodiesterase PDE10A ameliorates striatal and cortical pathology in R6/2 mouse model of Huntington’s disease. PLoS One. 2010;5:e13417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gines S, Seong IS, Fossale E, Ivanova E, Trettel F, Gusella JF, Wheeler VC, Persichetti F, MacDonald ME. Specific progressive cAMP reduction implicates energy deficit in presymptomatic Huntington’s disease knock-in mice. Hum Mol Genet. 2003;12:497–508.

    Article  CAS  PubMed  Google Scholar 

  • Giorgi M, Melchiorri G, Nuccetelli V, D’Angelo V, Martorana A, Sorge R, Castelli V, Bernardi G, Sancesario G. PDE10A and PDE10A-dependent cAMP catabolism are dysregulated oppositely in striatum and nucleus accumbens after lesion of midbrain dopamine neurons in rat: a key step in parkinsonism physiopathology. Neurobiol Dis. 2011;43:293–303.

    Article  CAS  PubMed  Google Scholar 

  • Grauer SM, Pulito VL, Navarra RL, Kelly MP, Kelley C, Graf R, Langen B, Logue S, Brennan J, Jiang L, et al. Phosphodiesterase 10A inhibitor activity in preclinical models of the positive, cognitive, and negative symptoms of schizophrenia. J Pharmacol Exp Ther. 2009;331:574–90.

    Article  CAS  PubMed  Google Scholar 

  • Graybiel AM. The basal ganglia. Curr Biol. 2000;10:R509–11.

    Article  CAS  PubMed  Google Scholar 

  • Greengard P. The neurobiology of slow synaptic transmission. Science. 2001;294:1024–30.

    Article  CAS  PubMed  Google Scholar 

  • Gresack JE, Seymour PA, Schmidt CJ, Risbrough VB. Inhibition of phosphodiesterase 10A has differential effects on dopamine D1 and D2 receptor modulation of sensorimotor gating. Psychopharmacology. 2014;231:2189–97.

    Article  CAS  PubMed  Google Scholar 

  • Hankir MK, Kranz M, Gnad T, Weiner J, Wagner S, Deuther-Conrad W, Bronisch F, Steinhoff K, Luthardt J, Klöting N, et al. A novel thermoregulatory role for PDE10A in mouse and human adipocytes. EMBO Mol Med. 2016;87:796–812.

    Article  CAS  Google Scholar 

  • Hardman JG, Robison GA, Sutherland EW. Cyclic nucleotides. Annu Rev Physiol. 1971;33:311–36.

    Article  CAS  PubMed  Google Scholar 

  • Hebb ALO, Robertson HA, Denovan-Wright EM. Striatal phosphodiesterase mRNA and protein levels are reduced in Huntington’s disease transgenic mice prior to the onset of motor symptoms. Neuroscience. 2004;123:967–81.

    Article  CAS  PubMed  Google Scholar 

  • Hebb ALO, Robertson HA, Denovan-Wright EM. Phosphodiesterase 10A inhibition is associated with locomotor and cognitive deficits and increased anxiety in mice. Eur Neuropsychopharmacol. 2008;18:339–63.

    Article  CAS  PubMed  Google Scholar 

  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell. 2008;135:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimann E, Jones HA, Resjö S, Manganiello VC, Stenson L, Degerman E. Expression and regulation of cyclic nucleotide phosphodiesterases in human and rat pancreatic islets. PLoS One. 2010;5:e14191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helal CJ, Kang Z, Hou X, Pandit J, Chappie TA, Humphrey JM, Marr ES, Fennell KF, Chenard LK, Fox C, et al. Use of structure-based design to discover a potent, selective, in vivo active phosphodiesterase 10A inhibitor lead series for the treatment of schizophrenia. J Med Chem. 2011;54:4536–47.

    Article  CAS  PubMed  Google Scholar 

  • Hersch SM, Ciliax BJ, Gutekunst CA, Rees HD, Heilman CJ, Yung KK, Bolam JP, Ince E, Yi H, Levey AI. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci. 1995;15:5222–37.

    CAS  PubMed  Google Scholar 

  • Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S. Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron. 2010;66:896–907.

    Article  CAS  PubMed  Google Scholar 

  • Hsu Y-T, Liao G, Bi X, Oka T, Tamura S, Baudry M. The PDE10A inhibitor, papaverine, differentially activates ERK in male and female rat striatal slices. Neuropharmacology. 2011;61:1275–81.

    Article  CAS  PubMed  Google Scholar 

  • Hu H, McCaw EA, Hebb ALO, Gomez GT, Denovan-Wright EM. Mutant huntingtin affects the rate of transcription of striatum-specific isoforms of phosphodiesterase 10A. Eur J Neurosci. 2004;20:3351–63.

    Article  PubMed  Google Scholar 

  • Hu Y, Deng L, Zhang J, Fang X, Mei P, Cao X, Lin J, Wei Y, Zhang X, Xu R. A pooling genome-wide association study combining a pathway analysis for typical sporadic Parkinson’s disease in the Han population of Chinese Mainland. Mol Neurobiol. 2015;53:4302–18.

    Article  PubMed  CAS  Google Scholar 

  • Huang Z, Liu S, Zhang L, Salem M, Greig GM, Chan CC, Natsumeda Y, Noguchi K. Preferential inhibition of human phosphodiesterase 4 by ibudilast. Life Sci. 2006;78:2663–8.

    Article  CAS  PubMed  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI. Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse. 1997;27:357–66.

    Article  CAS  PubMed  Google Scholar 

  • Jentsch JD, Roth RH. The neuropsychopharmacology of phencyclidine: from NMDA receptor hypofunction to the dopamine hypothesis of schizophrenia. Neuropsychopharmacology. 1999;20:201–25.

    Article  CAS  PubMed  Google Scholar 

  • Jones C, Watson D, Fone K. Animal models of schizophrenia. Br J Pharmacol. 2011;164:1162–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D2 occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry. 2000;157:514–20.

    Article  CAS  PubMed  Google Scholar 

  • Kawasaki H, Springett GM, Mochizuki N, Toki S, Nakaya M, Matsuda M, Housman DE, Graybiel AM. A family of cAMP-binding proteins that directly activate Rap1. Science. 1998;282:2275–9.

    Article  CAS  PubMed  Google Scholar 

  • Kelly MP. Putting together the pieces of phosphodiesterase distribution patterns in the brain: a jigsaw puzzle of cyclic nucleotide regulation. In: Brandon NJ, West AR, editors. Cyclic-nucleotide phosphodiesterases in the central nervous system. New York: Wiley; 2014. p. 47–58.

    Chapter  Google Scholar 

  • Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, Pathak G, Reinhart V, Romegialli A, Kleiman RJ. Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal. 2014;26:383–97.

    Article  CAS  PubMed  Google Scholar 

  • Kerner B, Lambert CG, Muthén BO. Genome-wide association study in bipolar patients stratified by co-morbidity. PLoS One. 2011;6:e28477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kleiman RJ, Kimmel LH, Bove SE, Lanz TA, Harms JF, Romegialli A, Miller KS, Willis A, des Etages S, Kuhn M, et al. Chronic suppression of phosphodiesterase 10A alters striatal expression of genes responsible for neurotransmitter synthesis, neurotransmission, and signaling pathways implicated in Huntington’s disease. J Pharmacol Exp Ther. 2011;336:64–76.

    Article  CAS  PubMed  Google Scholar 

  • Kotera J, Fujishige K, Yuasa K, Omori K. Characterization and phosphorylation of PDE10A2, a novel alternative splice variant of human phosphodiesterase that hydrolyzes cAMP and cGMP. Biochem Biophys Res Commun. 1999;261:551–7.

    Article  CAS  PubMed  Google Scholar 

  • Kotera J, Sasaki T, Kobayashi T, Fujishige K, Yamashita Y, Omori K. Subcellular localization of cyclic nucleotide phosphodiesterase type 10A variants, and alteration of the localization by cAMP-dependent protein kinase-dependent phosphorylation. J Biol Chem. 2004;279:4366–75.

    Article  CAS  PubMed  Google Scholar 

  • Kravitz AV, Freeze BS, Parker PRL, Kay K, Thwin MT, Deisseroth K, Kreitzer AC. Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature. 2010;466:622–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kravitz AV, Tye LD, Kreitzer AC. Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat Neurosci. 2012;15:816–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreitzer AC. Physiology and pharmacology of striatal neurons. Annu Rev Neurosci. 2009;32:127–47.

    Article  CAS  PubMed  Google Scholar 

  • Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature. 2007;445:643–7.

    Article  CAS  PubMed  Google Scholar 

  • Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455:894–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59:367–74.

    Article  CAS  PubMed  Google Scholar 

  • Langen B, Dost R, Egerland U, Stange H, Hoefgen N. Effect of PDE10A inhibitors on MK-801-induced immobility in the forced swim test. Psychopharmacology. 2012;221:249–59.

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Cantle JP, Chatzopoulou D, Wang N, Gao F, Al-Ramahi I, Lu X-H, Ramos EM, El-Zein K, Zhao Y, et al. Integrated genomics and proteomics define huntingtin CAG length-dependent networks in mice. Nat Neurosci. 2016;19:623–33.

    Article  CAS  PubMed  Google Scholar 

  • Li Y-W, Seager MA, Wojcik T, Heman K, Molski TF, Fernandes A, Langdon S, Pendri A, Gerritz S, Tian Y, et al. Biochemical and behavioral effects of PDE10A inhibitors: Relationship to target site occupancy. Neuropharmacology. 2016;102:121–35.

    Article  CAS  PubMed  Google Scholar 

  • Liddie S, Anderson KL, Paz A, Itzhak Y. The effect of phosphodiesterase inhibitors on the extinction of cocaine-induced conditioned place preference in mice. J Psychopharmacol (Oxf). 2012;26:1375–82.

    Article  CAS  Google Scholar 

  • Lin DTS, Fretier P, Jiang C, Vincent SR. Nitric oxide signaling via cGMP-stimulated phosphodiesterase in striatal neurons. Synapse. 2010;64:460–6.

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Day M, Muniz LC, Bitran D, Arias R, Revilla-Sanchez R, Grauer S, Zhang G, Kelley C, Pulito V, et al. Activation of estrogen receptor-[beta] regulates hippocampal synaptic plasticity and improves memory. Nat Neurosci. 2008;11:334–43.

    Article  CAS  PubMed  Google Scholar 

  • Lobo MK, Karsten SL, Gray M, Geschwind DH, Yang XW. FACS-array profiling of striatal projection neuron subtypes in juvenile and adult mouse brains. Nat Neurosci. 2006;9:443–52.

    Article  CAS  PubMed  Google Scholar 

  • Logrip ML, Vendruscolo LF, Schlosburg JE, Koob GF, Zorrilla EP. Phosphodiesterase 10A regulates alcohol and saccharin self-administration in rats. Neuropsychopharmacology. 2014;39:1722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loughney K, Snyder PB, Uher L, Rosman GJ, Ferguson K, Florio VA. Isolation and characterization of PDE10A, a novel human 3′, 5′-cyclic nucleotide phosphodiesterase. Gene. 1999;234:109–17.

    Article  CAS  PubMed  Google Scholar 

  • Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S, Chepenik KP, Waldman SA. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000;52:375–414.

    CAS  PubMed  Google Scholar 

  • MacMullen CM, Vick K, Pacifico R, Fallahi-Sichani M, Davis RL. Novel, primate-specific PDE10A isoform highlights gene expression complexity in human striatum with implications on the molecular pathology of bipolar disorder. Transl Psychiatry. 2016;6:e742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mango D, Bonito-Oliva A, Ledonne A, Nisticò R, Castelli V, Giorgi M, Sancesario G, Fisone G, Berretta N, Mercuri NB. Phosphodiesterase 10A controls D1-mediated facilitation of GABA release from striato-nigral projections under normal and dopamine-depleted conditions. Neuropharmacology. 2014;76(Pt A):127–36.

    Article  CAS  PubMed  Google Scholar 

  • Marquis KL, Sabb AL, Logue SF, Brennan JA, Piesla MJ, Comery TA, Grauer SM, Ashby CR, Nguyen HQ, Dawson LA, et al. WAY-163909 [(7bR,10aR)-1,2,3,4,8,9,10,10a-octahydro-7bH-cyclopenta-[b][1,4]diazepino[6,7,1hi]indole]: a novel 5-hydroxytryptamine 2C receptor-selective agonist with preclinical antipsychotic-like activity. J Pharmacol Exp Ther. 2007;320:486–96.

    Article  CAS  PubMed  Google Scholar 

  • Maurice DH, Ke H, Ahmad F, Wang Y, Chung J, Manganiello VC. Advances in targeting cyclic nucleotide phosphodiesterases. Nat Rev Drug Discov. 2014;13:290–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDonald M-L, MacMullen C, Liu DJ, Leal SM, Davis RL. Genetic association of cyclic AMP signaling genes with bipolar disorder. Transl Psychiatry. 2012;2:e169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megens AAHP, Hendrickx HMR, Mahieu MMA, Wellens ALY, de Boer P, Vanhoof G. PDE10A inhibitors stimulate or suppress motor behavior dependent on the relative activation state of the direct and indirect striatal output pathways. Pharmacol Res Perspect. 2014a;2:e00057.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Megens AAHP, Hendrickx HMR, Hens KA, Fonteyn I, Langlois X, Lenaerts I, Somers MVF, Boer P d, Vanhoof G. Pharmacology of JNJ-42314415, a centrally active phosphodiesterase 10A (PDE10A) inhibitor: a comparison of PDE10A inhibitors with D2 receptor blockers as potential antipsychotic drugs. J Pharmacol Exp Ther. 2014b;349:138–54.

    Article  PubMed  CAS  Google Scholar 

  • Mencacci NE, Kamsteeg E-J, Nakashima K, R’Bibo L, Lynch DS, Balint B, Willemsen MAAP, Adams ME, Wiethoff S, Suzuki K, et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet. 2016;98:763–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menniti FS, Faraci WS, Schmidt CJ. Phosphodiesterases in the CNS: targets for drug development. Nat Rev Drug Discov. 2006;5:660–70.

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Gonzalez-Hernandez T, Carrillo-Padilla F, Ferres-Torres R. Aggregations of granule cells in the basal forebrain (islands of Calleja): Golgi and cytoarchitectonic study in different mammals, including man. J Comp Neurol. 1989;284:405–28.

    Article  CAS  PubMed  Google Scholar 

  • Mu Y, Ren Z, Jia J, Gao B, Zheng L, Wang G, Friedman E, Zhen X. Inhibition of phosphodiesterase10A attenuates morphine-induced conditioned place preference. Mol Brain. 2014;7:70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nawrocki AR, Rodriguez CG, Toolan DM, Price O, Henry M, Forrest G, Szeto D, Keohane CA, Pan Y, Smith KM, et al. Genetic deletion and pharmacological inhibition of phosphodiesterase 10A protects mice from diet-induced obesity and insulin resistance. Diabetes. 2014;63:300–11.

    Article  CAS  PubMed  Google Scholar 

  • Niccolini F, Foltynie T, Marques TR, Muhlert N, Tziortzi AC, Searle GE, Natesan S, Kapur S, Rabiner EA, Gunn RN, et al. Loss of phosphodiesterase 10A expression is associated with progression and severity in Parkinson’s disease. Brain. 2015;138:3003–15.

    Article  PubMed  Google Scholar 

  • Nicola SM. The nucleus accumbens as part of a basal ganglia action selection circuit. Psychopharmacology. 2007;191:521–50.

    Article  CAS  PubMed  Google Scholar 

  • Nikiforuk A, Potasiewicz A, Rafa D, Drescher K, Bespalov A, Popik P. The effects of PDE10 inhibition on attentional set-shifting do not depend on the activation of dopamine D1 receptors. Behav Pharmacol. 2015;27:331–8.

    Article  CAS  Google Scholar 

  • Nishi A, Kuroiwa M, Miller DB, O’Callaghan JP, Bateup HS, Shuto T, Sotogaku N, Fukuda T, Heintz N, Greengard P, et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci. 2008;28:10460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi A, Kuroiwa M, Shuto T. Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front Neuroanat. 2011;5:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ooms M, Rietjens R, Rangarajan JR, Vunckx K, Valdeolivas S, Maes F, Himmelreich U, Fernandez-Ruiz J, Bormans G, Van Laere K, et al. Early decrease of type 1 cannabinoid receptor binding and phosphodiesterase 10A activity in vivo in R6/2 Huntington mice. Neurobiol Aging. 2014;35:2858–69.

    Article  CAS  PubMed  Google Scholar 

  • Padovan-Neto FE, Sammut S, Chakroborty S, Dec AM, Threlfell S, Campbell PW, Mudrakola V, Harms JF, Schmidt CJ, West AR. Facilitation of corticostriatal transmission following pharmacological inhibition of striatal phosphodiesterase 10A: role of nitric oxide-soluble guanylyl cyclase-cGMP signaling pathways. J Neurosci. 2015;35:5781–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piccart E, De Backer J-F, Gall D, Lambot L, Raes A, Vanhoof G, Schiffmann S, D’Hooge R. Genetic deletion of PDE10A selectively impairs incentive salience attribution and decreases medium spiny neuron excitability. Behav Brain Res. 2014;268:48–54.

    Article  CAS  PubMed  Google Scholar 

  • Picconi B, Bagetta V, Ghiglieri V, Paillè V, Filippo MD, Pendolino V, Tozzi A, Giampà C, Fusco FR, Sgobio C, et al. Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain. 2011;134:375–87.

    Article  PubMed  Google Scholar 

  • Plisson C, Weinzimmer D, Jakobsen S, Natesan S, Salinas C, Lin S-F, Labaree D, Zheng M-Q, Nabulsi N, Marques TR, et al. Phosphodiesterase 10A PET radioligand development program: from pig to human. J Nucl Med. 2014;55:595–601.

    Article  CAS  PubMed  Google Scholar 

  • Plotkin JL, Day M, Peterson JD, Xie Z, Kress GJ, Rafalovich I, Kondapalli J, Gertler TS, Flajolet M, Greengard P, et al. Impaired TrkB receptor signaling underlies corticostriatal dysfunction in Huntington’s disease. Neuron. 2014;83:178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podda MV, Grassi C. New perspectives in cyclic nucleotide-mediated functions in the CNS: the emerging role of cyclic nucleotide-gated (CNG) channels. Pflugers Arch. 2014;466:1241–57.

    Article  CAS  PubMed  Google Scholar 

  • Polito M, Guiot E, Gangarossa G, Longueville S, Doulazmi M, Valjent E, Hervé D, Girault J-A, Paupardin-Tritsch D, Castro LRV, et al. Selective effects of PDE10A inhibitors on striatopallidal neurons require phosphatase inhibition by DARPP-32. eNeuro. 2015;2

    Google Scholar 

  • Prensa L, Parent A. The nigrostriatal pathway in the rat: a single-axon study of the relationship between dorsal and ventral tier nigral neurons and the striosome/matrix striatal compartments. J Neurosci. 2001;21:7247–60.

    CAS  PubMed  Google Scholar 

  • Redgrave P, Prescott TJ, Gurney K. The basal ganglia: a vertebrate solution to the selection problem? Neuroscience. 1999;89:1009–23.

    Article  CAS  PubMed  Google Scholar 

  • Reed TM, Repaske DR, Snyder GL, Greengard P, Vorhees CV. Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J Neurosci. 2002;22:5188–97.

    CAS  PubMed  Google Scholar 

  • Reneerkens OAH, Rutten K, Bollen E, Hage T, Blokland A, Steinbusch HWM, Prickaerts J. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav Brain Res. 2013;236:16–22.

    Article  CAS  PubMed  Google Scholar 

  • Richfield EK, Penney JB, Young AB. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience. 1989;30:767–77.

    Article  CAS  PubMed  Google Scholar 

  • de Rooij J, Zwartkruis FJT, Verheijen MHG, Cool RH, Nijman SMB, Wittinghofer A, Bos JL. Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP. Nature. 1998;396:474–7.

    Article  PubMed  CAS  Google Scholar 

  • Russell DS, Barret O, Jennings DL, et al. The phosphodiesterase 10 positron emission tomography tracer, [18f]mni-659, as a novel biomarker for early huntington disease. JAMA Neurol. 2014;71:1520–8.

    Article  PubMed  Google Scholar 

  • Russell DS, Jennings DL, Barret O, Tamagnan GD, Carroll VM, Caillé F, Alagille D, Morley TJ, Papin C, Seibyl JP, et al. Change in PDE10 across early Huntington disease assessed by [18F]MNI-659 and PET imaging. Neurology. 2016;86:748–54.

    Article  CAS  PubMed  Google Scholar 

  • Russo SJ, Nestler EJ. The brain reward circuitry in mood disorders. Nat Rev Neurosci. 2013;14:609–25.

    Article  CAS  PubMed  Google Scholar 

  • Russwurm C, Koesling D, Russwurm M. Phosphodiesterase 10A is tethered to a synaptic signalling complex in striatum. J Biol Chem. 2015;290:11936–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sancesario G, Morrone LA, D’Angelo V, Castelli V, Ferrazzoli D, Sica F, Martorana A, Sorge R, Cavaliere F, Bernardi G, et al. Levodopa-induced dyskinesias are associated with transient down-regulation of cAMP and cGMP in the caudate-putamen of hemiparkinsonian rats: reduced synthesis or increased catabolism? Neurochem Int. 2014;79:44–56.

    Article  CAS  PubMed  Google Scholar 

  • Sano H, Nagai Y, Miyakawa T, Shigemoto R, Yokoi M. Increased social interaction in mice deficient of the striatal medium spiny neuron-specific phosphodiesterase 10A2. J Neurochem. 2008;105:546–56.

    Article  CAS  PubMed  Google Scholar 

  • Schiffmann SN, Vanderhaeghen JJ. Adenosine A2 receptors regulate the gene expression of striatopallidal and striatonigral neurons. J Neurosci. 1993;13:1080–7.

    CAS  PubMed  Google Scholar 

  • Schmidt CJ, Chapin DS, Cianfrogna J, Corman ML, Hajos M, Harms JF, Hoffman WE, Lebel LA, McCarthy SA, Nelson FR, et al. Preclinical characterization of selective phosphodiesterase 10A inhibitors: a new therapeutic approach to the treatment of schizophrenia. J Pharmacol Exp Ther. 2008;325:681–90.

    Article  CAS  PubMed  Google Scholar 

  • Schülke J-P, McAllister LA, Geoghegan KF, Parikh V, Chappie TA, Verhoest PR, Schmidt CJ, Johnson DS, Brandon NJ. Chemoproteomics demonstrates target engagement and exquisite selectivity of the clinical phosphodiesterase 10A inhibitor MP-10 in its native environment. ACS Chem Biol. 2014;9:2823–32.

    Article  PubMed  CAS  Google Scholar 

  • Schultz W. Multiple dopamine functions at different time courses. Annu Rev Neurosci. 2007;30:259–88.

    Article  CAS  PubMed  Google Scholar 

  • Seeger TF, Bartlett B, Coskran TM, Culp JS, James LC, Krull DL, Lanfear J, Ryan AM, Schmidt CJ, Strick CA, et al. Immunohistochemical localization of PDE10A in the rat brain. Brain Res. 2003;985:113–26.

    Article  CAS  PubMed  Google Scholar 

  • Simpson EH, Kellendonk C, Kandel E. A possible role for the striatum in the pathogenesis of the cognitive symptoms of schizophrenia. Neuron. 2010;65:585–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Fujiwara RA, James LC, Williams RD, Stock JL, McNeish JD, Strick CA, Menniti FS, et al. Genetic deletion of the striatum-enriched phosphodiesterase PDE10A: Evidence for altered striatal function. Neuropharmacology. 2006a;51:374–85.

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA, Chapin DS, Harms JF, Lebel LA, McCarthy SA, Chambers L, Shrikhande A, Wong S, Menniti FS, Schmidt CJ. Inhibition of the striatum-enriched phosphodiesterase PDE10A: a novel approach to the treatment of psychosis. Neuropharmacology. 2006b;51:386–96.

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Reed TM, Vorhees CV, Repaske DR. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology. 2007;53:113–24.

    Article  CAS  PubMed  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Martin AN, Harms JF, Schmidt CJ. Behavioral characterization of mice deficient in the phosphodiesterase-10A (PDE10A) enzyme on a C57/Bl6N congenic background. Neuropharmacology. 2008;54:417–27.

    Article  CAS  PubMed  Google Scholar 

  • Soderling SH, Bayuga SJ, Beavo JA. Isolation and characterization of a dual-substrate phosphodiesterase gene family: PDE10A. Proc Natl Acad Sci. 1999;96:7071–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotty F, Montezinho LP, Steiniger-Brach B, Nielsen J. Phosphodiesterase 10A inhibition modulates the sensitivity of the mesolimbic dopaminergic system to d-amphetamine: involvement of the D1-regulated feedback control of midbrain dopamine neurons. J Neurochem. 2009;109:766–75.

    Article  CAS  PubMed  Google Scholar 

  • Spiwoks-Becker I, Wolloscheck T, Rickes O, Kelleher DK, Rohleder N, Weyer V, Spessert R. Phosphodiesterase 10A in the rat pineal gland: localization, daily and seasonal regulation of expression and influence on signal transduction. Neuroendocrinology. 2011;94:113–23.

    Article  CAS  PubMed  Google Scholar 

  • Strick CA, Schmidt CJ, Menniti FS. PDE10A: a striatum-enriched, dual-substrate phosphodiesterase. In: Beavo JA, Francis SH, Houslay MD, editors. Cyclic nucleotide phosphodiesterases in health and disease. Boca Raton: CRC Press; 2006. p. 237–54.

    Google Scholar 

  • Strick CA, James LC, Fox CB, Seeger TF, Menniti FS, Schmidt CJ. Alterations in gene regulation following inhibition of the striatum-enriched phosphodiesterase, PDE10A. Neuropharmacology. 2010;58:444–51.

    Article  CAS  PubMed  Google Scholar 

  • Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 2007;30:228–35.

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Harada A, Suzuki H, Miyamoto M, Kimura H. TAK-063, a PDE10A inhibitor with balanced activation of direct and indirect pathways, provides potent antipsychotic-like effects in multiple paradigms. Neuropsychopharmacology. 2016;41:2252–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault J-A, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004;44:269–96.

    Article  CAS  PubMed  Google Scholar 

  • Talkowski ME, Rosenfeld JA, Blumenthal I, Pillalamarri V, Chiang C, Heilbut A, Ernst C, Hanscom C, Rossin E, Lindgren AM, et al. Sequencing chromosomal abnormalities reveals neurodevelopmental loci that confer risk across diagnostic boundaries. Cell. 2012;149:525–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor SS. The in vitro phosphorylation of chromatin by the catalytic subunit of cAMP-dependent protein kinase. J Biol Chem. 1982;257:6056–63.

    CAS  PubMed  Google Scholar 

  • Threlfell S, West AR. Review: modulation of striatal neuron activity by cyclic nucleotide signaling and phosphodiesterase inhibition. Basal Ganglia. 2013;3:137–46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Threlfell S, Sammut S, Menniti FS, Schmidt CJ, West AR. Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J Pharmacol Exp Ther. 2009;328:785–95.

    Article  CAS  PubMed  Google Scholar 

  • Vassilatis DK, Hohmann JG, Zeng H, Li F, Ranchalis JE, Mortrud MT, Brown A, Rodriguez SS, Weller JR, Wright AC, et al. The G protein-coupled receptor repertoires of human and mouse. Proc Natl Acad Sci U S A. 2003;100:4903–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vente J, Markerink-van Ittersum M, Vles JSH. ANP-mediated cGMP signaling and phosphodiesterase inhibition in the rat cervical spinal cord. J Chem Neuroanat. 2006;31:263–74.

    Article  PubMed  CAS  Google Scholar 

  • Verhoest PR, Chapin DS, Corman M, Fonseca K, Harms JF, Hou X, Marr ES, Menniti FS, Nelson F, O’Connor R, et al. Discovery of a novel class of phosphodiesterase 10A inhibitors and identification of clinical candidate 2-[4-(1-Methyl-4-pyridin-4-yl-1H-pyrazol-3-yl)-phenoxymethyl]-quinoline (PF-2545920) for the treatment of schizophrenia†† coordinates of the PDE10A crystal structures have been deposited in the protein data bank for compound 1 (3HQW), 2 (3HQY), 3 (3HQW) and 9 (3HR1). J Med Chem. 2009;52:5188–96.

    Article  CAS  PubMed  Google Scholar 

  • Wadenberg M-LG, Hicks PB. The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics? Neurosci Biobehav Rev. 1999;23:851–62.

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Breier M, Ko D, Thangaraj N, Marzan DE, Swerdlow NR. Evaluating the antipsychotic profile of the preferential PDE10A inhibitor, papaverine. Psychopharmacology. 2009;203:723–35.

    Article  CAS  PubMed  Google Scholar 

  • Wilson CJ. Understanding the neostriatal microcircuitry: high-voltage electron microscopy. Microsc Res Tech. 1994;29:368–80.

    Article  CAS  PubMed  Google Scholar 

  • Wilson LS, Brandon NJ. Emerging biology of PDE10A. Curr Pharm Des. 2015;21:378–88.

    Article  CAS  PubMed  Google Scholar 

  • Wilson JM, Ogden AML, Loomis S, Gilmour G, Baucum AJ II, Belecky-Adams TL, Merchant KM. Phosphodiesterase 10A inhibitor, MP-10 (PF-2545920), produces greater induction of c-Fos in dopamine D2 neurons than in D1 neurons in the neostriatum. Neuropharmacology. 2015;99:379–86.

    Article  CAS  PubMed  Google Scholar 

  • Wolloscheck T, Spiwoks-Becker I, Rickes O, Holthues H, Spessert R. Phosphodiesterase10A: abundance and circadian regulation in the retina and photoreceptor of the rat. Brain Res. 2011;1376:42–50.

    Article  CAS  PubMed  Google Scholar 

  • Wood H. Neurodegenerative disease: changes in brain phosphodiesterase 10A levels in neurodegenerative basal ganglia disorders. Nat Rev Neurol. 2015;11:483.

    Article  CAS  PubMed  Google Scholar 

  • Woolfrey KM, Srivastava DP, Photowala H, Yamashita M, Barbolina MV, Cahill ME, Xie Z, Jones KA, Quilliam LA, Prakriya M, et al. Epac2 induces synapse remodeling and depression and its disease-associated forms alter spines. Nat Neurosci. 2009;12:1275–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Adamowicz WO, Eldred WD, Jakowski AB, Kleiman RJ, Morton DG, Stephenson DT, Strick CA, Williams RD, Menniti FS. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience. 2006;139:597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Zhang H-T, O’Donnell JM. Phosphodiesterases in the central nervous system: implications in mood and cognitive disorders. In: Francis SH, Conti M, Houslay MD, editors. Phosphodiesterases as drug targets. Berlin/Heidelberg: Springer; 2011. p. 447–85.

    Chapter  Google Scholar 

  • Yagishita S, Hayashi-Takagi A, Ellis-Davies GCR, Urakubo H, Ishii S, Kasai H. A critical time window for dopamine actions on the structural plasticity of dendritic spines. Science. 2014;345:1616–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaleska MM. Advancing phosphodiesterase 10A (PDE10A) inhibitor from bench to clinic.In: CHDI Foundation therapeutics conference, Venice, Italy; 2013.

    Google Scholar 

  • Zhuang X, Belluscio L, Hen R. GOLFα mediates dopamine D1 receptor signaling. J Neurosci. 2000;20:RC91.

    CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

Nicholas J. Brandon and Jan-Philip Schülke were both full-time employees and shareholders in AstraZeneca at the time of writing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan-Philip Schülke or Nicholas J. Brandon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Schülke, JP., Brandon, N.J. (2017). Current Understanding of PDE10A in the Modulation of Basal Ganglia Circuitry. In: Zhang, HT., Xu, Y., O'Donnell, J. (eds) Phosphodiesterases: CNS Functions and Diseases. Advances in Neurobiology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58811-7_2

Download citation

Publish with us

Policies and ethics