Skip to main content

Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction

  • Chapter
  • First Online:

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 17))

Abstract

The focus of this chapter is on the cyclic nucleotide phosphodiesterase 1 (PDE1) family. PDE1 is one member of the 11 PDE families (PDE 1–11). It is the only phosphodiesterase family that is calcium/calmodulin activated. As a result, whereas other families of PDEs 2–11 play a dominant role controlling basal levels of cyclic nucleotides, PDE1 is involved when intra-cellular calcium levels are elevated and, thus, has an “on demand” or activity-dependent involvement in the control of cyclic nucleotides in excitatory cells including neurons, cardiomyocytes and smooth muscle. As a Class 1 phosphodiesterase, PDE1 hydrolyzes the 3′ bond of 3′-5′-cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). Here, we review evidence for this family of enzymes as drug targets for development of therapies aimed to address disorders of the central nervous system (CNS) and of degenerative diseases. The chapter includes sections on the potential for cognitive enhancement in mental disorders, as well as a review of PDE1 enzyme structure, enzymology, tissue distribution, genomics, inhibitors, pharmacology, clinical trials, and therapeutic indications. Information is taken from public databases. A number of excellent reviews of the phosphodiesterase family have been written as well as reviews of the PDE1 family. References cited here are not comprehensive, rather pointing to major reviews and key publications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Acin-Perez R, Salazar E, Kamenetsky M, Buck J, Levin LR, Manfredi G. Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell Metab. 2009;9(3):265–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn HS, Bercovici A, Boykow G, Bronnenkant A, Chackalamannil S, Chow J, Cleven R, Cook J, Czarniecki M, Domalski C, Fawzi A, Green M, Gundes A, Ho G, Laudicina M, Lindo N, Ma K, Manna M, McKittrick B, Mirzai B, Nechuta T, Neustadt B, Puchalski C, Pula K, Zhang H, et al. Potent tetracyclic guanine inhibitors of PDE1 and PDE5 cyclic guanosine monophosphate phosphodiesterases with oral antihypertensive activity. J Med Chem. 1997;40(14):2196–210.

    Article  CAS  PubMed  Google Scholar 

  • Alhosin M, Abusnina A, Achour M, Sharif T, Muller C, Peluso J, Chataigneau T, Lugnier C, Schini-Kerth VB, Bronner C, Fuhrmann G. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem Pharmacol. 2010;79(9):1251–60.

    Article  CAS  PubMed  Google Scholar 

  • Alosco ML, Spitznagel MB, Cohen R, Sweet LH, Colbert LH, Josephson R, Hughes J, Rosneck J, Gunstad J. Reduced cognitive function predicts functional decline in patients with heart failure over 12 months. Eur J Cardiovasc Nurs. 2014;13(4):304–10.

    Article  PubMed  Google Scholar 

  • Arnsten AF, Jin LE. Molecular influences on working memory circuits in dorsolateral prefrontal cortex. Prog Mol Biol Transl Sci. 2014;122:211–31.

    Article  CAS  PubMed  Google Scholar 

  • Beltman J, Sonnenburg WK, Beavo JA. The role of protein phosphorylation in the regulation of cyclic nucleotide phosphodiesterases. Mol Cell Biochem. 1993;127–128:239–53.

    Article  PubMed  Google Scholar 

  • Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006a;58(3):488–520.

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA. PDE1B2 regulates cGMP and a subset of the phenotypic characteristics acquired upon macrophage differentiation from a monocyte. Proc Natl Acad Sci U S A. 2006b;103(2):460–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bender AT, Ostenson CL, Giordano D, Beavo JA. Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cell Signal. 2004;16(3):365–74.

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Ostenson CL, Wang EH, Beavo JA. Selective up-regulation of PDE1B2 upon monocyte-to-macrophage differentiation. Proc Natl Acad Sci U S A. 2005;102(2):497–502.

    Article  CAS  PubMed  Google Scholar 

  • Bollen E, Akkerman S, Puzzo D, Gulisano W, Palmeri A, D'Hooge R, Balschun D, Steinbusch HW, Blokland A, Prickaerts J. Object memory enhancement by combining sub-efficacious doses of specific phosphodiesterase inhibitors. Neuropharmacology. 2015;95:361–6.

    Article  CAS  PubMed  Google Scholar 

  • Bollen E, Prickaerts J. Phosphodiesterases in neurodegenerative disorders. IUBMB Life. 2012;64(12):965–70.

    Article  CAS  PubMed  Google Scholar 

  • Boyd KN, Mailman RB. Dopamine receptor signaling and current and future antipsychotic drugs. Handb Exp Pharmacol. 2012;212:53–86.

    Article  CAS  Google Scholar 

  • Cabanero M, Laje G, Detera-Wadleigh S, McMahon FJ. Association study of phosphodiesterase genes in the sequenced treatment alternatives to relieve depression sample. Pharmacogenet Genomics. 2009;19(3):235–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Card GL, Blasdel L, England BP, Zhang C, Suzuki Y, Gillette S, Fong D, Ibrahim PN, Artis DR, Bollag G, Milburn MV, Kim SH, Schlessinger J, Zhang KY. A family of phosphodiesterase inhibitors discovered by cocrystallography and scaffold-based drug design. Nat Biotechnol. 2005;23(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  • Cowley MJ, Pinese M, Kassahn KS, et al. PINA v2.0: mining interactome modules. Nucleic Acids Res. 2012;40(Database issue):D862–5. doi:10.1093/nar/gkr967.

  • Cygnar KD, Zhao H. Phosphodiesterase 1C is dispensable for rapid response termination of olfactory sensory neurons. Nat Neurosci. 2009;12(4):454–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda T, Pertzev A, Sharma RK. Atrial natriuretic factor receptor guanylate cyclase, ANF-RGC, transduces two independent signals, ANF and Ca(2+). Front Mol Neurosci. 2014;7:17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehrman LA, Williams MT, Schaefer TL, Gudelsky GA, Reed TM, Fienberg AA, Greengard P, Vorhees CV. Phosphodiesterase 1B differentially modulates the effects of methamphetamine on locomotor activity and spatial learning through DARPP32-dependent pathways: evidence from PDE1B-DARPP32 double-knockout mice. Genes Brain Behav. 2006;5(7):540–51.

    Article  CAS  PubMed  Google Scholar 

  • Faas GC, Raghavachari S, Lisman JE, Mody I. Calmodulin as a direct detector of Ca2+ signals. Nat Neurosci. 2011;14(3):301–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feola M, Garnero S, Vallauri P, Salvatico L, Vado A, Leto L, Testa M. Relationship between cognitive function, depression/anxiety and functional parameters in patients admitted for congestive heart failure. Open Cardiovasc Med J. 2013;7:54–60.

    Article  PubMed  PubMed Central  Google Scholar 

  • Florio VA, Sonnenburg WK, Johnson R, Kwak KS, Jensen GS, Walsh KA, Beavo JA. Phosphorylation of the 61-kDa calmodulin-stimulated cyclic nucleotide phosphodiesterase at serine 120 reduces its affinity for calmodulin. Biochemistry. 1994;33(30):8948–54.

    Article  CAS  PubMed  Google Scholar 

  • Garcia S, Alosco ML, Spitznagel MB, Cohen R, Raz N, Sweet L, Colbert L, Josephson R, Hughes J, Rosneck J, Gunstad J. Poor sleep quality and reduced cognitive function in persons with heart failure. Int J Cardiol. 2012;156(2):248–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Giardina WJ, Williams M. Adrogolide HCl (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: preclinical pharmacology and clinical data. CNS Drug Rev. 2001;7(3):305–16.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS. Circuitry of the frontal association cortex and its relevance to dementia. Arch Gerontol Geriatr. 1987;6(3):299–309.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS. Working memory dysfunction in schizophrenia. J Neuropsychiatry Clin Neurosci. 1994;6(4):348–57.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS. Cellular basis of working memory. Neuron. 1995;14(3):477–85.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS. Memory: recording experience in cells and circuits: diversity in memory research. Proc Natl Acad Sci U S A. 1996;93(24):13435–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman-Rakic PS. The cortical dopamine system: role in memory and cognition. Adv Pharmacol. 1998;42:707–11.

    Article  CAS  PubMed  Google Scholar 

  • Goldman-Rakic PS. The physiological approach: functional architecture of working memory and disordered cognition in schizophrenia. Biol Psychiatry. 1999;46(5):650–61.

    Article  CAS  PubMed  Google Scholar 

  • Goraya TA, Cooper DMF. Review: Ca2+-calmodulin-dependent phosphodiesterase (PDE1): current perspectives. Cell Signal. 2005;17:789–97.

    Article  CAS  PubMed  Google Scholar 

  • Hannila SS, Filbin MT. The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol. 2008;209(2):321–32.

    Article  CAS  PubMed  Google Scholar 

  • Hannila SS, Siddiq MM, Filbin MT. Therapeutic approaches to promoting axonal regeneration in the adult mammalian spinal cord. Int Rev Neurobiol. 2007;77:57–105.

    Article  CAS  PubMed  Google Scholar 

  • Heredia A, Davis C, Amoroso A, Dominique JK, Le N, Klingebiel E, Reardon E, Zella D, Redfield RR. Induction of G1 cycle arrest in T lymphocytes results in increased extracellular levels of beta-chemokines: a strategy to inhibit R5 HIV-1. Proc Natl Acad Sci U S A. 2003;100(7):4179–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higgins DG, Thompson JD, Gibson TJ. Using CLUSTAL for multiple sequence alignments. Methods Enzymol. 1996;266:383–402.

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Lawler CP, Lewis MM, Nichols DE, Mailman RB. D1 dopamine receptors. Int Rev Neurobiol. 2001;48:65–139.

    Article  CAS  PubMed  Google Scholar 

  • Humphrey JM, Yang E, Ende CW a, Arnold EP, Head JL, Jenkinson S, Lebel LA, Liras S, Pandit J, Samas B, Vajdos F, Simons SP, Evdokimov A, Mansour M, Menniti FS. Small-molecule phosphodiesterase probes: discovery of potent and selective CNS-penetrable quinazoline inhibitors of PDE1. Med Chem Commun. 2014;5(9):1290.

    Article  CAS  Google Scholar 

  • Johnson WB, Katugampola S, Able S, Napier C, Harding SE. Profiling of cAMP and cGMP phosphodiesterases in isolated ventricular cardiomyocytes from human hearts: comparison with rat and guinea pig. Life Sci. 2012;90(9–10):328–36.

    Article  CAS  PubMed  Google Scholar 

  • Kakkar R, Raju RV, Sharma RK. Calmodulin-dependent protein kinase II from bovine cardiac muscle: purification and differential activation by calcium. Cell Calcium. 1996;20(4):347–53.

    Article  CAS  PubMed  Google Scholar 

  • Kakkar R, Raju RV, Sharma RK. In vitro generation of an active calmodulin-independent phosphodiesterase from brain calmodulin-dependent phosphodiesterase (PDE1A2) by m-calpain. Arch Biochem Biophys. 1998;358(2):320–8.

    Article  CAS  PubMed  Google Scholar 

  • Kakkar R, Raju RV, Sharma RK. Calmodulin-dependent cyclic nucleotide phosphodiesterase (PDE1). Cell Mol Life Sci. 1999;55(8–9):1164–86.

    Article  CAS  PubMed  Google Scholar 

  • Kemeny V, Molnar S, Andrejkovics M, Makai A, Csiba L. Acute and chronic effects of vinpocetine on cerebral hemodynamics and neuropsychological performance in multi-infarct patients. J Clin Pharmacol. 2005;45(9):1048–54.

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Rybalkin SD, Pi X, Wang Y, Zhang C, Munzel T, Beavo JA, Berk BC, Yan C. Upregulation of phosphodiesterase 1A1 expression is associated with the development of nitrate tolerance. Circulation. 2001;104(19):2338–43.

    Article  CAS  PubMed  Google Scholar 

  • Kleppisch T, Feil R. cGMP signalling in the mammalian brain: role in synaptic plasticity and behaviour. Handb Exp Pharmacol. 2009;191:549–79.

    Article  CAS  Google Scholar 

  • Knecht KM, Alosco ML, Spitznagel MB, Cohen R, Raz N, Sweet L, Colbert LH, Josephson R, Hughes J, Rosneck J, Gunstad J. Sleep apnea and cognitive function in heart failure. Cardiovasc Psychiatry Neurol. 2012;2012:402079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kostic MM, Erdogan S, Rena G, Borchert G, Hoch B, Bartel S, Scotland G, Huston E, Houslay MD, Krause EG. Altered expression of PDE1 and PDE4 cyclic nucleotide phosphodiesterase isoforms in 7-oxo-prostacyclin-preconditioned rat heart. J Mol Cell Cardiol. 1997;29(11):3135–46.

    Article  CAS  PubMed  Google Scholar 

  • Lakics V, Karran EH, Boess FG. Quantitative comparison of phosphodiesterase mRNA distribution in human brain and peripheral tissues. Neuropharmacology. 2010;59(6):367–74.

    Article  CAS  PubMed  Google Scholar 

  • Lee DI, Kass DA. Phosphodiesterases and cyclic GMP regulation in heart muscle. Physiology (Bethesda). 2012;27(4):248–58.

    Article  CAS  Google Scholar 

  • Leitman DC, Murad F. Atrial natriuretic factor receptor heterogeneity and stimulation of particulate guanylate cyclase and cyclic GMP accumulation. Endocrinol Metab Clin N Am. 1987;16(1):79–105.

    CAS  Google Scholar 

  • Lek M, Karczewski K, Minikel E, Samocha K, Banks E, Fennell T, O'Donnell-Luria A, Ware J, Hill A, Cummings B, Tukiainen T, Birnbaum D, Kosmicki J, Duncan L, Estrada K, Zhao F, Zou J, Pierce-Hoffman E, Cooper D, DePristo M, Do R, Flannick J, Fromer M, Gauthier L, Goldstein J, Gupta N, Howrigan D, Kiezun A, Kurki M, Levy Moonshine A, Natarajan P, Orozco L, Peloso G, Poplin R, Rivas M, Ruano-Rubio V, Ruderfer D, Shakir K, Stenson P, Stevens C, Thomas B, Tiao G, Tusie-Luna M, Weisburd B, Won H-H, Yu D, Altshuler D, Ardissino D, Boehnke M, Danesh J, Roberto E, Florez J, Gabriel S, Getz G, Hultman C, Kathiresan S, Laakso M, McCarroll S, McCarthy M, McGovern D, McPherson R, Neale B, Palotie A, Purcell S, Saleheen D, Scharf J, Sklar P, Patrick S, Tuomilehto J, Watkins H, Wilson J, Daly M, MacArthur D. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li P, Zheng H, Zhao J, Zhang L, Yao W, Zhu H, Beard JD, Ida K, Lane W, Snell G, Sogabe S, Heyser CJ, Snyder GL, Hendrick JP, Vanover KE, Davis RE, Wennogle LP. Discovery of potent and selective inhibitors of phosphodiesterase 1 for the treatment of cognitive impairment associated with neurodegenerative and neuropsychiatric diseases. J Med Chem. 2016;59(3):1149–64.

    Article  CAS  PubMed  Google Scholar 

  • Loughney K, Martins TJ, Harris EA, Sadhu K, Hicks JB, Sonnenburg WK, Beavo JA, Ferguson K. Isolation and characterization of cDNAs corresponding to two human calcium, calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. J Biol Chem. 1996;271(2):796–806.

    Article  CAS  PubMed  Google Scholar 

  • Lu HE, MacGillavry HD, Frost NA, Blanpied TA. Multiple spatial and kinetic subpopulations of CaMKII in spines and dendrites as resolved by single-molecule tracking PALM. J Neurosci. 2014;34(22):7600–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mailman RB, Huang X. Dopamine receptor pharmacology. Handb Clin Neurol. 2007;83:77–105.

    Article  PubMed  Google Scholar 

  • Mailman RB, Schulz DW, Kilts CD, Lewis MH, Rollema H, Wyrick S. Multiple forms of the D1 dopamine receptor: its linkage to adenylate cyclase and psychopharmacological effects. Psychopharmacol Bull. 1986;22(3):593–8.

    CAS  PubMed  Google Scholar 

  • Martin YC. The discovery of novel selective D1 dopaminergic agonists: A-68930, A-77636, A-86929, and ABT-413. Int J Med Chem. 2011;2011:424535.

    PubMed  PubMed Central  Google Scholar 

  • Mastromatteo-Alberga P, Placeres-Uray F, Alfonzo-González MA, Alfonzo RGD, Becemberg ILD, Alfonzo MJ. A novel PDE1A coupled to M2AChR at plasma membranes from bovine tracheal smooth muscle. J Recept Signal Transduct Res. 2016;36:1–10.

    Article  CAS  Google Scholar 

  • Michibata H, Yanaka N, Kanoh Y, Okumura K, Omori K. Human Ca2+/calmodulin-dependent phosphodiesterase PDE1A: novel splice variants, their specific expression, genomic organization, and chromosomal localization. Biochim Biophys Acta. 2001;1517(2):278–87.

    Article  CAS  PubMed  Google Scholar 

  • Miller CL, Cai Y, Oikawa M, Thomas T, Dostmann WR, Zaccolo M, Fujiwara K, Yan C. Cyclic nucleotide phosphodiesterase 1A: a key regulator of cardiac fibroblast activation and extracellular matrix remodeling in the heart. Basic Res Cardiol. 2011;106(6):1023–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CL, Oikawa M, Cai Y, Wojtovich AP, Nagel DJ, Xu X, Xu H, Florio V, Rybalkin SD, Beavo JA, Chen YF, Li JD, Blaxall BC, Abe J, Yan C. Role of Ca2+/calmodulin-stimulated cyclic nucleotide phosphodiesterase 1 in mediating cardiomyocyte hypertrophy. Circ Res. 2009;105(10):956–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller CL, Yan C. Targeting cyclic nucleotide phosphodiesterase in the heart: therapeutic implications. J Cardiovasc Transl Res. 2010;3(5):507–15.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moraska AR, Chamberlain AM, Shah ND, Vickers KS, Rummans TA, Dunlay SM, Spertus JA, Weston SA, McNallan SM, Redfield MM, Roger VL. Depression, healthcare utilization, and death in heart failure: a community study circulation. Circ Heart Failure. 2013;6(3):387–94.

    Article  CAS  PubMed  Google Scholar 

  • Mottola DM, Brewster WK, Cook LL, Nichols DE, Mailman RB. Dihydrexidine, a novel full efficacy D1 dopamine receptor agonist. J Pharmacol Exp Ther. 1992;262(1):383–93.

    CAS  PubMed  Google Scholar 

  • Murata T, Shimizu K, Hiramoto K, Tagawa T. Phosphodiesterase 3 (PDE3): structure, localization and function. Cardiovasc Hematol Agents Med Chem. 2009;7(3):206–11.

    Article  CAS  PubMed  Google Scholar 

  • Nagel DJ, Aizawa T, Jeon KI, Liu W, Mohan A, Wei H, Miano JM, Florio VA, Gao P, Korshunov VA, Berk BC, Yan C. Role of nuclear Ca2+/calmodulin-stimulated phosphodiesterase 1A in vascular smooth muscle cell growth and survival. Circ Res. 2006;98(6):777–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson B, Sass LA, Thompson A, Yung AR, Francey SM, Amminger GP, McGorry PD. Does disturbance of self underlie social cognition deficits in schizophrenia and other psychotic disorders? Early Interv Psychiatry. 2009;3(2):83–93.

    Article  PubMed  Google Scholar 

  • Nino PK, Durik M, Danser AH, de Vries R, Musterd-Bhaggoe UM, Meima ME, Kavousi M, Ghanbari M, Hoeijmakers JH, O'Donnell CJ, Franceschini N, Janssen GM, De Mey JG, Liu Y, Shanahan CM, Franco OH, Dehghan A, Roks AJ. Phosphodiesterase 1 regulation is a key mechanism in vascular aging. Clin Sci (Lond). 2015;129(12):1061–75.

    Article  CAS  Google Scholar 

  • Oliva AA Jr, Kang Y, Furones C, Alonso OF, Bruno O, Dietrich WD, Atkins CM. Phosphodiesterase isoform-specific expression induced by traumatic brain injury. J Neurochem. 2012;123(6):1019–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patyar S, Prakash A, Modi M, Medhi B. Role of vinpocetine in cerebrovascular diseases. Pharmacol Rep. 2011;63(3):618–28.

    Article  CAS  PubMed  Google Scholar 

  • Paul AP, Pohl-Guimaraes F, Krahe TE, Filgueiras CC, Lantz CL, Colello RJ, Wang W, Medina AE. Overexpression of serum response factor restores ocular dominance plasticity in a model of fetal alcohol spectrum disorders. J Neurosci. 2010;30(7):2513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perlis RH, Fijal B, Dharia S, Heinloth AN, Houston JP. Failure to replicate genetic associations with antidepressant treatment response in duloxetine-treated patients. Biol Psychiatry. 2010;67(11):1110–3.

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Cai D, Dai H, McAtee M, Hoffman PN, Bregman BS, Filbin MT. Spinal axon regeneration induced by elevation of cyclic AMP. Neuron. 2002;34(6):895–903.

    Article  CAS  PubMed  Google Scholar 

  • Rajagopal S, Nalli AD, Kumar DP, Bhattacharya S, Hu W, Mahavadi S, Grider JR, Murthy KS. Cytokine-induced S-nitrosylation of soluble guanylyl cyclase and expression of phosphodiesterase 1A contribute to dysfunction of longitudinal smooth muscle relaxation. J Pharmacol Exp Ther. 2015;352:509–18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reed TM, Repaske DR, Snyder GL, Greengard P, Vorhees CV. Phosphodiesterase 1B knock-out mice exhibit exaggerated locomotor hyperactivity and DARPP-32 phosphorylation in response to dopamine agonists and display impaired spatial learning. J Neurosci. 2002;22:5188–97.

    CAS  PubMed  Google Scholar 

  • Reneerkens OA, Rutten K, Bollen E, Hage T, Blokland A, Steinbusch HW, Prickaerts J. Inhibition of phoshodiesterase type 2 or type 10 reverses object memory deficits induced by scopolamine or MK-801. Behav Brain Res. 2013;236(1):16–22.

    Article  CAS  PubMed  Google Scholar 

  • Reneerkens OA, Rutten K, Steinbusch HW, Blokland A, Prickaerts J. Selective phosphodiesterase inhibitors: a promising target for cognition enhancement. Psychopharmacology. 2009;202(1–3):419–43.

    Article  CAS  PubMed  Google Scholar 

  • Rybalkin SD, Yan C, Bornfeldt KE, Beavo JA. Cyclic GMP phosphodiesterases and regulation of smooth muscle function. Circ Res. 2003;93(4):280–91.

    Article  CAS  PubMed  Google Scholar 

  • Samudra N, Ivleva EI, Hubbard NA, Rypma B, Sweeney JA, Clementz BA, Keshavan MS, Pearlson GD, Tamminga CA. Alterations in hippocampal connectivity across the psychosis dimension. Psychiatry Res. 2015;233(2):148–57.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma RK, Das SB, Lakshmikuttyamma A, Selvakumar P, Shrivastav A. Regulation of calmodulin-stimulated cyclic nucleotide phosphodiesterase (PDE1): review. Int J Mol Med. 2006;18(1):95–105.

    CAS  PubMed  Google Scholar 

  • Sharma RK, Kalra J. Characterization of calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes. Biochem J. 1994;299:97–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma RK, Wang JH. Differential regulation of bovine brain calmodulin-dependent cyclic nucleotide phosphodiesterase isoenzymes by cyclic AMP-dependent protein kinase and calmodulin-dependent phosphatase. Proc Natl Acad Sci U S A. 1985;82(9):2603–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siuciak JA, McCarthy SA, Chapin DS, Reed TM, Vorhees CV, Repaske DR. Behavioral and neurochemical characterization of mice deficient in the phosphodiesterase-1B (PDE1B) enzyme. Neuropharmacology. 2007;53:113–24.

    Article  CAS  PubMed  Google Scholar 

  • Slifstein M, van de Giessen E, Van Snellenberg J, Thompson JL, Narendran R, Gil R, Hackett E, Girgis R, Ojeil N, Moore H, D'Souza D, Malison RT, Huang Y, Lim K, Nabulsi N, Carson RE, Lieberman JA, Abi-Dargham A. Deficits in prefrontal cortical and extrastriatal dopamine release in schizophrenia: a positron emission tomographic functional magnetic resonance imaging study. JAMA Psychiat. 2015;72(4):316–24.

    Article  Google Scholar 

  • Sonnenburg WK, Rybalkin SD, Bornfeldt KE, Kwak KS, Rybalkina IG, Beavo JA. Identification, quantitation, and cellular localization of PDE1 calmodulin-stimulated cyclic nucleotide phosphodiesterases. Methods. 1998;14(1):3–19.

    Article  CAS  PubMed  Google Scholar 

  • Sonnenburg WK, Seger D, Kwak KS, Huang J, Charbonneau H, Beavo JA. Identification of inhibitory and calmodulin-binding domains of the PDE1A1 and PDE1A2 calmodulin-stimulated cyclic nucleotide phosphodiesterases. J Biol Chem. 1995;270(52):30989–1000.

    Article  CAS  PubMed  Google Scholar 

  • Spence S, Rena G, Sullivan M, Erdogan S, Houslay MD. Receptor-mediated stimulation of lipid signalling pathways in CHO cells elicits the rapid transient induction of the PDE1B isoform of Ca2+/calmodulin-stimulated cAMP phosphodiesterase. Biochem J. 1997;321:157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spence S, Rena G, Sweeney G, Houslay MD. Induction of Ca2+/calmodulin-stimulated cyclic AMP phosphodiesterase (PDE1) activity in Chinese hamster ovary cells (CHO) by phorbol 12-myristate 13-acetate and by the selective overexpression of protein kinase C isoforms. Biochem J. 1995;310:975–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szatmari SZ, Whitehouse PJ. Vinpocetine for cognitive impairment and dementia. Cochrane Database Syst Rev. 2003;1:CD003119.

    Google Scholar 

  • Szilagyi G, Nagy Z, Balkay L, Boros I, Emri M, Lehel S, Marian T, Molnar T, Szakall S, Tron L, Bereczki D, Csiba L, Fekete I, Kerenyi L, Galuska L, Varga J, Bonoczk P, Vas A, Gulyas B. Effects of vinpocetine on the redistribution of cerebral blood flow and glucose metabolism in chronic ischemic stroke patients: a PET study. J Neurol Sci. 2005;229–230:275–84.

    Article  PubMed  CAS  Google Scholar 

  • Tamminga CA, Stan AD, Wagner AD. The hippocampal formation in schizophrenia. Am J Psychiatry. 2010;167(10):1178–93.

    Article  PubMed  Google Scholar 

  • Thompson JL, Rosell DR, Slifstein M, Girgis RR, Xu X, Ehrlich Y, Kegeles LS, Hazlett EA, Abi-Dargham A, Siever LJ. Prefrontal dopamine D1 receptors and working memory in schizotypal personality disorder: a PET study with [(1)(1)C]NNC112. Psychopharmacology. 2014;231(21):4231–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandeput F, Wolda SL, Krall J, Hambleton R, Uher L, McCaw KN, Radwanski PB, Florio V, Movsesian MA. Cyclic nucleotide phosphodiesterase PDE1C1 in human cardiac myocytes. J Biol Chem. 2007;282(45):32749–57.

    Article  CAS  PubMed  Google Scholar 

  • Vasta V, Sonnenburg WK, Yan C, Soderling SH, Shimizu-Albergine M, Beavo JA. Identification of a new variant of PDE1A calmodulin-stimulated cyclic nucleotide phosphodiesterase expressed in mouse sperm. Biol Reprod. 2005;73(4):598–609.

    Article  CAS  PubMed  Google Scholar 

  • Wong ML, Whelan F, Deloukas P, Whittaker P, Delgado M, Cantor RM, McCann SM, Licinio J. Phosphodiesterase genes are associated with susceptibility to major depression and antidepressant treatment response. Proc Natl Acad Sci U S A. 2006;103(41):15124–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan C. Cyclic nucleotide phosphodiesterase 1 and vascular aging. Clin Sci (Lond). 2015;129(12):1077–81.

    Article  CAS  Google Scholar 

  • Yan C, Zhao AZ, Bentley JK, Beavo JA. The calmodulin-dependent phosphodiesterase gene PDE1C encodes several functionally different splice variants in a tissue-specific manner. J Biol Chem. 1996;271(41):25699–706.

    Article  CAS  PubMed  Google Scholar 

  • Yan C, Zhao AZ, Bentley JK, Loughney K, Ferguson K, Beavo JA. Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc Natl Acad Sci U S A. 1995;92(21):9677–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Paspalas CD, Jin LE, Picciotto MR, Arnsten AF, Wang M. Nicotinic alpha7 receptors enhance NMDA cognitive circuits in dorsolateral prefrontal cortex. Proc Natl Acad Sci U S A. 2013;110(29):12078–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye H, Wang X, Sussman CR, Hopp K, Irazabal MV, Bakeberg JL, LaRiviere WB, Manganiello VC, Voorhees CV, Zhao H, Harris PC, van Deursen J, Ward CJ, Torres VE. Modulation of polycystic kidney disease severity by phosphodiesterase 1 and 3 subfamilies. J Am Soc Nephrol. 2016;27:1312–20.

    Article  CAS  PubMed  Google Scholar 

  • Zhang KY, Card GL, Suzuki Y, Artis DR, Fong D, Gillette S, Hsieh D, Neiman J, West BL, Zhang C, Milburn MV, Kim SH, Schlessinger J, Bollag G. A glutamine switch mechanism for nucleotide selectivity by phosphodiesterases. Mol Cell. 2004;15(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Schwartz S, Wagner L, Miller W. A greedy algorithm for aligning DNA sequences. J Comput Biol. 2000;7(1–2):203–14.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xiong B, Zhen X, Zhang A. Dopamine D1 receptor ligands: where are we now and where are we going. Med Res Rev. 2009;29(2):272–94.

    Article  CAS  PubMed  Google Scholar 

  • Zhao AZ, Yan C, Sonnenburg WK, Beavo JA. Recent advances in the study of Ca2+/CaM-activated phosphodiesterases: expression and physiological functions. Adv Second Messenger Phosphoprotein Res. 1997;31:237–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest Statement

All authors are full-time employees of Intra-Cellular Therapies, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence P. Wennogle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wennogle, L.P., Hoxie, H., Peng, Y., Hendrick, J.P. (2017). Phosphodiesterase 1: A Unique Drug Target for Degenerative Diseases and Cognitive Dysfunction. In: Zhang, HT., Xu, Y., O'Donnell, J. (eds) Phosphodiesterases: CNS Functions and Diseases. Advances in Neurobiology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58811-7_13

Download citation

Publish with us

Policies and ethics