Skip to main content

Phosphodiesterase Diversity and Signal Processing Within cAMP Signaling Networks

  • Chapter
  • First Online:
Book cover Phosphodiesterases: CNS Functions and Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 17))

Abstract

A large number of neuromodulators activate G-protein coupled receptors (GPCRs) and mediate their cellular actions via the regulation of intracellular cAMP, the small highly diffusible second messenger. In fact, in the same neuron several different GPCRs can regulate cAMP with seemingly identical timecourses that give rise to distinct signaling outcomes, suggesting that cAMP does not have equivalent access to all its downstream effectors and may exist within defined intracellular pools or domains. cAMP compartmentalization is the process that allows the neuron to differentially interpret these various intracellular cAMP signals into cellular response. The molecular mechanisms that give rise to cAMP compartmentalization are not fully understood, but it is thought that phosphodiesterases (PDEs), the enzymes that degrade cAMP, significantly contribute to this process. PDEs, as the sole mechanism of signal termination for cAMP, hold great promise as therapeutic targets for pathologies that are due to the dysregulation of intracellular cAMP signaling. Due to their diverse catalytic activity, regulation and localization each PDE subtype expressed in a given neuron may have a distinct role on downstream signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bacskai BJ, Hochner B, Mahaut-Smith M, Adams SR, Kaang BK, et al. Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons. Science. 1993;260:222–6.

    Article  CAS  PubMed  Google Scholar 

  • Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520.

    Article  CAS  PubMed  Google Scholar 

  • Carlisle Michel JJ, Dodge KL, Wong W, Mayer NC, Langeberg LK, Scott JD. PKA-phosphorylation of PDE4D3 facilitates recruitment of the mAKAP signalling complex. Biochem J. 2004;381:587–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cedervall P, Aulabaugh A, Geoghegan KF, McLellan TJ, Pandit J. Engineered stabilization and structural analysis of the autoinhibited conformation of PDE4. Proc Natl Acad Sci U S A. 2015;112:E1414–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charych EI, Jiang LX, Lo F, Sullivan K, Brandon NJ. Interplay of palmitoylation and phosphorylation in the trafficking and localization of phosphodiesterase 10A: implications for the treatment of schizophrenia. J Neurosci. 2010;30:9027–37.

    Article  CAS  PubMed  Google Scholar 

  • Conti M, Mika D, Richter W. Cyclic AMP compartments and signaling specificity: role of cyclic nucleotide phosphodiesterases. J Gen Physiol. 2014;143:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conti M, Richter W, Mehats C, Livera G, Park JY, Jin C. Cyclic AMP-specific PDE4 phosphodiesterases as critical components of cyclic AMP signaling. J Biol Chem. 2003;278:5493–6.

    Article  CAS  PubMed  Google Scholar 

  • Dodge KL, Khouangsathiene S, Kapiloff MS, Mouton R, Hill EV, et al. mAKAP assembles a protein kinase A/PDE4 phosphodiesterase cAMP signaling module. EMBO J. 2001;20:1921–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erneux C, Couchie D, Dumont JE, Baraniak J, Stec WJ, et al. Specificity of cyclic GMP activation of a multi-substrate cyclic nucleotide phosphodiesterase from rat liver. Eur J Biochem. 1981;115:503–10.

    Article  CAS  PubMed  Google Scholar 

  • Esteban JA, Shi SH, Wilson C, Nuriya M, Huganir RL, Malinow R. PKA phosphorylation of AMPA receptor subunits controls synaptic trafficking underlying plasticity. Nat Neurosci. 2003;6:136–43.

    Article  CAS  PubMed  Google Scholar 

  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, et al. A translational profiling approach for the molecular characterization of CNS cell types. Cell. 2008;135:738–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmings HC Jr, Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature. 1984;310:503–5.

    Article  CAS  PubMed  Google Scholar 

  • Hoffmann R, Baillie GS, MacKenzie SJ, Yarwood SJ, Houslay MD. The MAP kinase ERK2 inhibits the cyclic AMP-specific phosphodiesterase HSPDE4D3 by phosphorylating it at Ser579. EMBO J. 1999;18:893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly MP, Adamowicz W, Bove S, Hartman AJ, Mariga A, et al. Select 3′,5′-cyclic nucleotide phosphodiesterases exhibit altered expression in the aged rodent brain. Cell Signal. 2014;26:383–97.

    Article  CAS  PubMed  Google Scholar 

  • Kotera J, Sasaki T, Kobayashi T, Fujishige K, Yamashita Y, Omori K. Subcellular localization of cyclic nucleotide phosphodiesterase type 10A variants, and alteration of the localization by cAMP-dependent protein kinase-dependent phosphorylation. J Biol Chem. 2004;279:4366–75.

    Article  CAS  PubMed  Google Scholar 

  • Leroy MJ, Degerman E, Taira M, Murata T, Wang LH, et al. Characterization of two recombinant PDE3 (cGMP-inhibited cyclic nucleotide phosphodiesterase) isoforms, RcGIP1 and HcGIP2, expressed in NIH 3006 murine fibroblasts and Sf9 insect cells. Biochemistry. 1996;35:10194–202.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Gervasi N, Girault J-A. Dendritic geometry shapes neuronal cAMP signalling to the nucleus. Nat Commun. 2015;6:6319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim J, Pahlke G, Conti M. Activation of the cAMP-specific phosphodiesterase PDE4D3 by phosphorylation. Identification and function of an inhibitory domain. J Biol Chem. 1999;274:19677–85.

    Article  CAS  PubMed  Google Scholar 

  • Lin DT, Fretier P, Jiang C, Vincent SR. Nitric oxide signaling via cGMP-stimulated phosphodiesterase in striatal neurons. Synapse. 2010;64:460–6.

    Article  CAS  PubMed  Google Scholar 

  • Martinez SE, Wu AY, Glavas NA, Tang XB, Turley S, et al. The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding. Proc Natl Acad Sci U S A. 2002;99:13260–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins TJ, Mumby MC, Beavo JA. Purification and characterization of a cyclic GMP-stimulated cyclic nucleotide phosphodiesterase from bovine tissues. J Biol Chem. 1982;257:1973–9.

    CAS  PubMed  Google Scholar 

  • Meyers J, Craig J, Odde DJ. Potential for control of signaling pathways via cell size and shape. Curr Biol. 2006;16:1685–93.

    Article  CAS  PubMed  Google Scholar 

  • Mika D, Conti M. PDE4D phosphorylation: a coincidence detector integrating multiple signaling pathways. Cell Signal. 2016;28:719–24.

    Article  CAS  PubMed  Google Scholar 

  • Mika D, Richter W, Conti M. A CaMKII/PDE4D negative feedback regulates cAMP signaling. Proc Natl Acad Sci U S A. 2015;112:2023–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mironov SL, Skorova E, Taschenberger G, Hartelt N, Nikolaev VO, et al. Imaging cytoplasmic cAMP in mouse brainstem neurons. BMC Neurosci. 2009;10:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neves SR, Tsokas P, Sarkar A, Grace EA, Rangamani P, et al. Cell shape and negative links in regulatory motifs together control spatial information flow in signaling networks. Cell. 2008;133:666–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishi A, Kuroiwa M, Miller DB, O’Callaghan JP, Bateup HS, et al. Distinct roles of PDE4 and PDE10A in the regulation of cAMP/PKA signaling in the striatum. J Neurosci. 2008;28:10460–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noyama K, Maekawa S. Localization of cyclic nucleotide phosphodiesterase 2 in the brain-derived Triton-insoluble low-density fraction (raft). Neurosci Res. 2003;45:141–8.

    Article  CAS  PubMed  Google Scholar 

  • Omori K, Kotera J. Overview of PDEs and their regulation. Circ Res. 2007;100:309–27.

    Article  CAS  PubMed  Google Scholar 

  • Ouimet CC, Miller PE, Hemmings HC Jr, Walaas SI, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. III Immunocytochemical localization. J Neurosci. 1984;4:111–24.

    CAS  PubMed  Google Scholar 

  • Pandit J, Forman MD, Fennell KF, Dillman KS, Menniti FS. Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct. Proc Natl Acad Sci U S A. 2009;106:18225–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perino A, Ghigo A, Scott JD, Hirsch E. Anchoring proteins as regulators of signaling pathways. Circ Res. 2012;111:482–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Plattner F, Hayashi K, Hernandez A, Benavides DR, Tassin TC, et al. The role of ventral striatal cAMP signaling in stress-induced behaviors. Nat Neurosci. 2015;18:1094–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polito M, Guiot E, Gangarossa G, Longueville S, Doulazmi M, et al. Selective effects of PDE10A inhibitors on striatopallidal neurons require phosphatase inhibition by DARPP-32(1,2,3). eNeuro. 2015;2

    Google Scholar 

  • Polito M, Klarenbeek J, Jalink K, Paupardin-Tritsch D, Vincent P, Castro LR. The NO/cGMP pathway inhibits transient cAMP signals through the activation of PDE2 in striatal neurons. Front Cell Neurosci. 2013;7:211.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Repaske DR, Corbin JG, Conti M, Goy MF. A cyclic GMP-stimulated cyclic nucleotide phosphodiesterase gene is highly expressed in the limbic system of the rat brain. Neuroscience. 1993;56:673–86.

    Article  CAS  PubMed  Google Scholar 

  • Richter W, Conti M. Dimerization of the type 4 cAMP-specific phosphodiesterases is mediated by the upstream conserved regions (UCRs). J Biol Chem. 2002;277:40212–21.

    Article  CAS  PubMed  Google Scholar 

  • Rosman GJ, Martins TJ, Sonnenburg WK, Beavo JA, Ferguson K, Loughney K. Isolation and characterization of human cDNAs encoding a cGMP-stimulated 3′,5′-cyclic nucleotide phosphodiesterase. Gene. 1997;191:89–95.

    Article  CAS  PubMed  Google Scholar 

  • Russwurm C, Koesling D, Russwurm M. Phosphodiesterase 10A is tethered to a synaptic signaling complex in striatum. J Biol Chem. 2015;290:11936–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Russwurm C, Zoidl G, Koesling D, Russwurm M. Dual acylation of PDE2A splice variant 3: targeting to synaptic membranes. J Biol Chem. 2009;284:25782–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sample V, DiPilato LM, Yang JH, Ni Q, Saucerman JJ, Zhang J. Regulation of nuclear PKA revealed by spatiotemporal manipulation of cyclic AMP. Nat Chem Biol. 2012;8:375–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saucerman JJ, Greenwald EC, Polanowska-Grabowska R. Mechanisms of cyclic AMP compartmentation revealed by computational models. J Gen Physiol. 2014;143:39–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serulle Y, Zhang S, Ninan I, Puzzo D, McCarthy M, et al. A GluR1-cGKII interaction regulates AMPA receptor trafficking. Neuron. 2007;56:670–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sette C, Conti M. Phosphorylation and activation of a cAMP-specific phosphodiesterase by the cAMP-dependent protein kinase. Involvement of serine 54 in the enzyme activation. J Biol Chem. 1996;271:16526–34.

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Zhou Y, Yang XL. Characterization of AMPA receptors on isolated amacrine-like cells in carp retina. Eur J Neurosci. 1999;11:4233–40.

    Article  CAS  PubMed  Google Scholar 

  • Snyder GL, Allen PB, Fienberg AA, Valle CG, Huganir RL, et al. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci. 2000;20:4480–8.

    CAS  PubMed  Google Scholar 

  • Song RS, Massenburg B, Wenderski W, Jayaraman V, Thompson L, Neves SR. ERK regulation of phosphodiesterase 4 enhances dopamine-stimulated AMPA receptor membrane insertion. Proc Natl Acad Sci U S A. 2013;110:15437–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephenson DT, Coskran TM, Kelly MP, Kleiman RJ, Morton D, et al. The distribution of phosphodiesterase 2A in the rat brain. Neuroscience. 2012;226:145–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission. Annu Rev Pharmacol Toxicol. 2004;44:269–96.

    Article  CAS  PubMed  Google Scholar 

  • Taylor SS, Zhang P, Steichen JM, Keshwani MM, Kornev AP. PKA: lessons learned after twenty years. Biochim Biophys Acta. 2013;1834:1271–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrenoire C, Houslay MD, Baillie GS, Kass RS. The cardiac IKs potassium channel macromolecular complex includes the phosphodiesterase PDE4D3. J Biol Chem. 2009;284:9140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terrin A, Di Benedetto G, Pertegato V, Cheung YF, Baillie G, et al. PGE(1) stimulation of HEK293 cells generates multiple contiguous domains with different [cAMP]: role of compartmentalized phosphodiesterases. J Cell Biol. 2006;175:441–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsvetanova NG, von Zastrow M. Spatial encoding of cyclic AMP signaling specificity by GPCR endocytosis. Nat Chem Biol. 2014;10:1061–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Staveren WC, Steinbusch HW, Markerink-Van Ittersum M, Repaske DR, Goy MF, et al. mRNA expression patterns of the cGMP-hydrolyzing phosphodiesterases types 2, 5, and 9 during development of the rat brain. J Comp Neurol. 2003;467:566–80.

    Article  PubMed  CAS  Google Scholar 

  • Wykes V, Bellamy TC, Garthwaite J. Kinetics of nitric oxide-cyclic GMP signalling in CNS cells and its possible regulation by cyclic GMP. J Neurochem. 2002;83:37–47.

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Adamowicz WO, Eldred WD, Jakowski AB, Kleiman RJ, et al. Cellular and subcellular localization of PDE10A, a striatum-enriched phosphodiesterase. Neuroscience. 2006;139:597–607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Blackman B, Scheitrum C, Mika D, Blanchard E, et al. The upstream conserved regions (UCRs) mediate homo- and hetero-oligomerization of type 4 cyclic nucleotide phosphodiesterases (PDE4s). Biochem J. 2014;459:539–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Q, Paskind M, Bolger G, Thompson WJ, Repaske DR, et al. A novel cyclic GMP stimulated phosphodiesterase from rat brain. Biochem Biophys Res Commun. 1994;205:1850–8.

    Article  CAS  PubMed  Google Scholar 

  • Zaccolo M, Pozzan T. Discrete microdomains with high concentration of cAMP in stimulated rat neonatal cardiac myocytes. Science. 2002;295:1711–5.

    Article  CAS  PubMed  Google Scholar 

  • Zhao CY, Greenstein JL, Winslow RL. Interaction between phosphodiesterases in the regulation of the cardiac beta-adrenergic pathway. J Mol Cell Cardiol. 2015;88:29–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao CY, Greenstein JL, Winslow RL. Roles of phosphodiesterases in the regulation of the cardiac cyclic nucleotide cross-talk signaling network. J Mol Cell Cardiol. 2016;91:215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana R. Neves-Zaph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Neves-Zaph, S.R. (2017). Phosphodiesterase Diversity and Signal Processing Within cAMP Signaling Networks. In: Zhang, HT., Xu, Y., O'Donnell, J. (eds) Phosphodiesterases: CNS Functions and Diseases. Advances in Neurobiology, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58811-7_1

Download citation

Publish with us

Policies and ethics