Fertilizer Deep Placement as One Way of Increasing Nitrogen Use Efficiency and Grain Yield in West African Irrigated Rice Systems

  • A. A. Bandaogo
  • B. Fofana
  • S. Youl


Nitrogen (N) is the main nutrient that is limiting rice yields (Oryza sativa L.) in West Africa, and it loss can be very high particularly in the irrigated rice systems with poor water control. Previous studies have reported very low (30%) fertilizer N use efficiency by broadcasting in irrigated cropping systems. And N deficiency can negatively affect phosphorus and potassium plant uptake and reduce rice yields. The effect of fertilizer urea (46% nitrogen – N) broadcast or deep placed (FDP) using urea super granules (USG) on rice yield performance and nutrient uptakes was investigated in West Africa. Fields and pot experiments were carried out in Burkina Faso in the wet and dry season of 2012 and 2013, respectively. The main objective of the experiments was to evaluate how fertilizer N application methods – using prilled urea broadcast (PU) or briquettes (urea supergranules – USGs) affect N use efficiency in irrigated rice systems. PU was broadcast applied, and USGs were point placed deeply into the soil at 5–7 cm to two different Nerica rice varieties (FKR 19 and NERICA 62N), using same fertilizer N rates (52 kg N ha−1). The pot experiments investigated the effect of soil pH on N use efficiency, and phosphorus (P) and potassium (K) uptakes for both PU and USG application methods. Field experiments clearly indicate higher rice fertilizer nutrient N, P and K uptakes with USG than PU, resulting in significantly higher rice yields in USG-plots. Average rice grain yield was 5146 kg ha−1 with USG and 4583 kg ha−1 with PU in the wet season, and 7000 kg ha−1 and 6644 kg ha−1, respectively, in the dry season. NERICA 62N was much more responsive to USG as compared with FKR 19 variety as it produced higher tillers and panicles numbers under USG, leading to significantly higher yields as compared with FKR 19. In the wet season, USG significantly increased N agronomic efficiency (NAE) by 39.43% and physiological efficiency by 24.23% over PU. In the dry season, however, differences in N use efficiency (NUE) between USG and PU were not significant. Pot experiments indicate that soil total N was higher in acid than in alkaline soils. And rice N, P and K nutrient uptakes were significantly higher with USG than PU. These confirm the superiority of USG over PU in terms of increasing N, P and K nutrient uptakes and N use efficiency as observed in the field experiments. These studies suggest that in West African irrigated rice systems, fertilizer deep placement could be more effective in improving nutrient N, P and K uptakes, N use efficiency and irrigated rice yields. And smallholder rice farmers in West Africa may derive more benefits from using fertilizer deep placement technology than the conventional urea broadcast application method.


West Africa Irrigated rice Fertilizer deep placement Nutrient uptakes N use efficiency 


  1. Bandaogo, A. (2010). Amélioration de la fertilisation azotée en riziculture irriguée dans la Vallée du Kou à travers la technologie du placement profond de l’urée super granulé. Mémoire de DEA, Université polytechnique de Bobo-Dioulasso, 47 p.Google Scholar
  2. Bandaogo, A., Fofana, B., Youl, S., Abaidoo, C., Safo, E. Y., & Opoku, A. (2014). Effect of fertilizer deep placement with urea supergranule on nitrogen use efficiency of irrigated rice in Sourou Valley (Burkina Faso). Nutrient Cycling in Agroecosystems, 102(2), 79–89.Google Scholar
  3. Bassolé, D. (2007). Contribution a la réflexion sur la qualité des intrants agricoles au Burkina Faso. Etude sur la qualité des engrais vendus en détails dans 14 localités d’implantation des boutiques d’intrants et de location de matériels au Burkina. APIPAC, IFDC. 39p.Google Scholar
  4. Bowen W. T., Diamond, R. B., Singh, U., & Thompson, T. P. (2004). Urea deep placement increases yield and save Nitrogen fertilizer in farmer’s field in Bangladesh. (pp. 369–372).Google Scholar
  5. Cai, G. X., Chen, D. L., Ding, H., Pacholski, A., Fan, X. H., & Zhu, Z. L. (2002). Nitrogen losses from fertilizers applied to maize, wheat and rice in north China plain. Nutrient Cycling in Agroecosystems, 63, 187–195.CrossRefGoogle Scholar
  6. Cassman, K. G., Peng, S., Olk, D. C., Ladha, J. K., Reichardt, W., Dobermann, A., & Singh, U. (1998). Opportunities for increased nitrogen-use efficiency from improved resource management in irrigated rice systems. Field Crops Research, 56, 7–39.CrossRefGoogle Scholar
  7. Choudhury, A. T. M. A., Zaman, S. K., & Bhuiyan, N. I. (1997). Nitrogen response behavior of four rice varieties under wetland culture. Thai Journal of Agricultural Science, 30, 195–202.Google Scholar
  8. Craswell, E. T., & Godwin, D. C. (1984). The efficiency of nitrogen fertilizers applied to cereals in different climates. In P. B. Tinker & A. Lauchli (Eds.), Advances in plant nutrition (Vol. 1). New York: Praeger Scientific.Google Scholar
  9. Craswell, E. T., Vlek, P. L. G. (1979). Fate of fertilizer nitrogen applied to wet-land rice. In Nitrogen and rice (pp. 175–192). Los Banos: International Rice Research Institute.Google Scholar
  10. Dastan, S., Siavoshi, M., Zakavi, D., Ghanbariamalidarreh, A., Yadi, R., Ghorbannia, D. E., & Nasiri, A. R. (2012). Application of nitrogen and silicon rates on morphological and chemical lodging related characteristics in rice (Oryza sativa L.) North of Iran. Journal of Agricultural Science, 4(6), 1–18.Google Scholar
  11. De Datta, S. K. (1981). Principles and practices of rice production. New York: Wiley.Google Scholar
  12. De Datta, S. K., & Patrick, W. (1986). Nitrogen economy of flooded rice soils. Dordrecht: Martinus Nijhoff Publishers.Google Scholar
  13. Dobermann, A., & Fairhurst, T. (2000). Rice: Nutrient disorders and nutrient management, 191 pp.Google Scholar
  14. Duan, Y. H., Zhang, Y. L., Shen, Q. R., Chen, H. Y., & Zhang, Y. (2005). Effect of partial replacement of NH4+ by NO3 on nitrogen uptake and utilization by different genotypes of rice at the seedling stage. Plant Nutrition and Fertilizer Science, 11(2), 160–165.Google Scholar
  15. Dupuy, J., D’onofrio, G., & Gaudin, R. (1990). Etude à l’aide d’urée enrichie en 15N de la fertilisation azotée du riz inondé à Madagascar: « Comparaison entre supergranules d’urée, perllurée et solution d’urée placée à 1cm ou 10 cm de profondeur ». L’Agronomie Tropicale, 45(1), 3–10.Google Scholar
  16. Fageria, N. K., & Baligar, V. C. (2001). Lowland rice response to nitrogen fertilisation. Soil Science and Plant Analysis, 32(9–10), 1405–1429.CrossRefGoogle Scholar
  17. Fageria, N. K., De Morais, O. P., & Dos Santos, A. B. (2010). Nitrogen use efficiency in upland rice genotypes. Journal of Plant Nutrition, 33, 1696–1711.CrossRefGoogle Scholar
  18. Faggi, P., & Mozzi, P. (2000). La territorialisation hydraulique dans la Vallée du Sourou (Burkina Faso). Université de Padova, 78 p.Google Scholar
  19. FAO. (2006). Plant nutrition for food security. A guide for integrated nutrient management (p. 368). Viale delle Terme di Caracalla00100. Rome.Google Scholar
  20. Fillery, I. R. P., Roger, P. A., & De Datta, S. K. (1986). Ammonia volatilization from nitrogen sources applied to rice fields. Soil Science Society of America Journal, 50, 86–91.Google Scholar
  21. Freney, J. R., Leuning, R., Simpson, J. R., Denmead, O. T., & Muirhead, W. A. (1985). Estimating ammonia volatilization from flooded rice fields by simplified techniques. Soil Science Society of America Journal, 49, 1049–1054.CrossRefGoogle Scholar
  22. Gaudin, R. (1988). L’ammoniac NH3, une clé pour comprendre l’efficacité des supergranules d’urée en riziculture irriguée. L’Agronomie tropicale, 43(1), 30–36.Google Scholar
  23. Guindo, D., Wells, B. R., & Norman, R. J. (1994). Cultivars and nitrogen rate influence on nitrogen uptake and partitioning in rice. Soil Science Society of America Journal, 58(3), 840–849.CrossRefGoogle Scholar
  24. Habtegebrial, K., Sintayehu, M., & Solomon, H. (2013). Nitrogen and sulphur fertilizers effects on yield, nitrogen uptake and nitrogen use efficiency of upland rice variety on irrigated Fulvisols of the Afar region, Ethiopia. Journal of Soil Science and Environmental Management, 4(3), 62–70.CrossRefGoogle Scholar
  25. Hassan, M. S., Hossein, S. M. A., Salim, M., Anwer, M. P., & Azed, A. K. M. (2002). Response of hybrid and inbred varieties to the application methods of urea supergranules and prilled urea. Pakistan Journal of Biological Sciences, 5, 746–748.CrossRefGoogle Scholar
  26. Jiang, L. G., Dai, T. B., Jiang, D., Cao, W. X., Gan, X. Q., & Wei, S. Q. (2004). Characterizing physiological N use efficiency as influenced by nitrogen management in three rice cultivars. Field Crops Research, 88, 239–250.CrossRefGoogle Scholar
  27. Jiang, L., Dong, D., Gan, X., & Wei, S. (2005). Photosynthetic efficiency and nitrogen distribution under different nitrogen management and relationship with physiological nitrogen use efficiency in three rice genotypes. Plant and Soil, 271, 321–328.CrossRefGoogle Scholar
  28. Kabore, K. B., Segda, Z., Ouedraogo, M., Traore, H., Lompo, F., & Dakouo, D. (2011). Politique rizicole du burkina faso et perspectives conference sur « 30 ans de partenariat mali-fondation syngenta pour une agriculture durable>> 5–7 octobre 2011 bamako. Mali.Google Scholar
  29. Kapoor, V., Singh, U., Patil, S. K., Magre, H., Shrivastava, L. K., & Mishra, V. N. (2008). Rice growth, grain yield, and floodwater. Agronomy Journal, 100(3), 526–536.CrossRefGoogle Scholar
  30. Ladha, J. K., & Reddy, P. M. (2003). Nitrogen fixation in rice system: State of knowledge and future prospects. Plant and Soil, 252, 151–167.CrossRefGoogle Scholar
  31. Liu, L. J., Xu, W., CF, W., & Yang, J. C. (2007). Characteristics of growth, development and nutrient uptake in rice under site-specific nitrogen management. Chinese Journal Rice Science, 21(2), 167–173.Google Scholar
  32. Longo, R. M., & Melo, W. J. (2005). Urea hydrolysis in oxisols: Effects of substrate concentration, temperature, pH, incubation time and storage. Revista Brasiliera. Ciência do Solo, 24, 651–657.Google Scholar
  33. Maqsood, A. M., Awan, K. U., Aziz, T., Arshad, H., Ashraf, N., & Ali, M. (2016). Nitrogen management in calcareous soils: Problems and solutions. Pakistan Journal Agriculture Science, 53(1), 79–95.Google Scholar
  34. Mohammad, M. H., Mohd, K. Y., Radziah, O., & Samsuri, A. (2015). Characterization of nitrogen uptake pattern in Malaysian rice MR219 at different growth stages using 15N Isotope. Rice Science, 22(5), 250–254.CrossRefGoogle Scholar
  35. Mohanty, S. K., Singh, U., Balasubramanian, V., & Jha, K. P. (1999). Nitrogen deep-placement technologies for productivity, profitability and environmental quality of rainfed lowland rice systems. Nutrient Cycling and Agroecosystems, 53, 43–57.CrossRefGoogle Scholar
  36. Pasandaran, E., Gulton, B., Adiringsih, J. S., Aspari, H., & Rochayati, S. R. (1999). Government policy support for technology promotion and adoption: a case study of urea tablet technology in Indonesia. Nutrient Cycling in Agroecosystems, 53, 113–119.CrossRefGoogle Scholar
  37. Peoples, M. B., Freney, J. R., & Mosier, A. R. (1995). Minimizing gaseous losses of nitrogen. In P. E. Bacon (Ed.), Nitrogen fertilization in the environment (pp. 565–602). New York: Marcel Dekker.Google Scholar
  38. Rabat, P. (2003). Les engrais et leurs applications (4e édition., p. 77). Précis à l’usage des agents de la vulgarisation agricole.Google Scholar
  39. SAS Institute Inc. (1999). SAS/STAT® User’s Guide, Version 8. Cary, SAS Institute, Cary, NC, USA, 173 pp.Google Scholar
  40. Sathiya, K., & Ramesh, T. (2009). Effect of split application of nitrogen on growth and yield aerobic rice. Asian Journal of Experimental Sciences, 23(1), 303–306.Google Scholar
  41. Savant, N. K., & Stangel, P. J. (1990). Deep placement of urea supergranules in transplanted rice: principles and practices. Fertilizer Research, 25, 1–83.CrossRefGoogle Scholar
  42. Savant, N. K., Ongkingco, P. S., Zarate, I. V., Torrizo, F. M., & Stangel, P. J. (1991). Urea briquette applicator for transplanted rice. Fertilizer Research, 28, 323–331.CrossRefGoogle Scholar
  43. Segda, Z. (2006). Gestion de la fertilité du sol pour une production améliorée et durable du riz (Oriza sativa L.) au Burkina Faso. Cas de la plaine irrigué de Bagré. Thèse présentée à l’UFR/SVT. Thèse doctorat UO. BF. 202p+publications.Google Scholar
  44. Shaaban, M., Abid, M., & Abou-Shanab, R. A. I. (2013). Amelioration of salt affected soils in rice paddy system by application of organic and inorganic amendments. Plant Soil Environment, 59(5), 227–233.Google Scholar
  45. Sheehy, J. E., & Mitchell, P. L. (2011). Rice and global food security: The race between scientific discovery and catastrophe Chapter 8 (pp. 81–90). © Smith-Gordon 2011.Google Scholar
  46. Sheehy, J. E., Dionoraa, M. J. A., Mitchelib, P. L., Penga, S., Casmanc, K. G., Lemaire, G., & William, R. L. (1998). Critical nitrogen concentrations: implications for high-yielding rice (Oriza sativa L) cultivars in the tropics. Fields Crops Research, 59, 31–41.CrossRefGoogle Scholar
  47. Singh, U. (2005). Integrated nitrogen fertilization for intensive and sustainable agriculture. Journal of Crop Improvement, 15(2), 1–19.Google Scholar
  48. Stangel, P. J. (1989). Urea supergranule for transplanted rice. IFDC research review. In V. Kumar et al. (Eds.), Soil fertility and fertilizer use (Vol. III, pp. 1–9). New Delhi: Indian Farmers Fertilizer Cooperative (IFFCO) Limited.Google Scholar
  49. Vlek, P. L. G., & Craswell, E. T. (1981). Ammonia volatilization from flooded soils. Fertility Research, 2, 227–245.Google Scholar
  50. Wang, S., Yan, Z., Haidong, J., & Weixing, C. (2005). Positional differences in nitrogen and sugar concentrations of upper leaves relate to plant N status in rice under different N rates. Field Crops Research, 96, 224–234.CrossRefGoogle Scholar
  51. Whitehead, D. C. (2000). Nitrogen. In D. C. Whitehead (Ed.), Nutrient elements in grassland (pp. 95–125). Wallingford: CAB International.Google Scholar
  52. Yameogo, P. L., Segda, Z., Dakouo, D., & Sedogo, M. P. (2013). Placement profond de l’urée et amélioration de l’efficacité d’utilisation de l’azote en riziculture de Karfiguela au Burkina Faso. Journal of Applied Biosciences, 70.Google Scholar
  53. Yoseftabar, S. (2012). Effect of nitrogen and phosphorus fertilizer on growth and yield rice (Oryza sativa L). International Journal of Agronomy and Plant Production., 3(12), 579–584.Google Scholar
  54. Yoseftabar, S. (2013). Effect nitrogen management on panicle structure and yield in rice (Oryza sativa L.) International Journal of Agriculture and Crop Sciences, 5(11), 1224–1227.Google Scholar
  55. Yoshida, S., Cock, J. H., & Parao, F. T. (1972). Physiological aspects of high yields. In Rice breeding (pp. 143–154). Los Banos: International Rice Research Institute.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Institute of Environment and Agronomic Research (INERA)Bobo DioulassoBurkina Faso
  2. 2.Sasakawa Africa Association Crop Productivity EnhancementAddis AbabaEthiopia
  3. 3.International Fertilizer Development CenterOuagadougouBurkina Faso

Personalised recommendations