Advertisement

Fertilizer Recommendations for Maize Production in the South Sudan and Sudano-Guinean Zones of Benin

  • Aliou Saïdou
  • I. Balogoun
  • E. L. Ahoton
  • A. M. Igué
  • S. Youl
  • G. Ezui
  • A. Mando
Chapter

Abstract

The present study aims to determine fertilizer (N-P-K) recommendations for maize (Zea mays L.) on Acrisols (south Benin) and Ferric and Plintic Luvisols (centre Benin). Two years experiment (2011 and 2012) were conducted at Dogbo and Allada districts (southern) and Dassa (centre Benin). Six on-farm experiments were carried out in order to validate fertilizer rates simulated by DSSAT simulation model. The experimental design in each farmers’ field was a completely randomized bloc with four replications and ten N-P-K rates: 0-0-0 (control), 44-15-17.5 (standard fertilizer recommendation for maize), 80-30-40, 80-15-40, 80-30-25, 80-30-0, 69-30-40, 92-30-40, 69-15-25 and 46-15-25 kg ha−1. The optimum N, P and K rates in both research sites were: 80.5 kg N ha−1; 22.5 kg P ha−1 and 20 kg K ha−1. Treatments 44-15-17.5 and 46-15-25 showed the lowest grain and stover yields compared to the other treatments. The observed maize grain yields were highly correlated with the estimated grain yields (R2 values varied between 80 and 91% for growing season 2011 and between 68 and 94% for growing season of 2012). The NRSME values varied between 12.54 and 22.56% (for growing season of 2011) and between 13.09 and 24.13% (for growing season of 2012). The economic strategies analysis for pass 32 years (1980 to 2012) showed that N-P-K rates 80-30-25 (site of Dogbo), 80-15-40 (site of Allada) and 80.5-22.5-20 (site of Dassa) were the best fertilizer recommendations as they presented the highest grain yields and the best return to investment per hectare.

Keywords

Soil fertility Simulation DSSAT Acrisols Ferric and plintic luvisols 

Notes

Acknowledgements

The authors are grateful to the International Fertilizer Development Centre (IFDC), through the West Africa Fertilizer Program (USAID WAFP) for providing financial support to the present research.

References

  1. Acakpo, C. C. (2004). Efficacité agronomique et rationalité paysanne autour de la gestion des fumures minÕrales et de leurs effets résiduels dans les systémes de production coton-maïs au centre Bénin. Thèse pour l'obtention du diplôme d'ingénieur agronome, option Sciences et Techniques de Production Végétale. Université d'Abomey-Calavi, Bénin, 91 p.Google Scholar
  2. Adégbidi, A., Gandonou, E., Padonou, E., Maliki, R., Megnanglo, M., & Konnon, D. (2000). Etude des filières des intrants agricoles au Bénin (engrais minéraux, produits phytosanitaires, semences, matériels et équipements agricoles, fertilisants organiques). Tome 2 et 3. Initiative sur la Fertilité des Sols (IFS). FAO/Banque Mondiale. GTZ, Cotonou, Bénin. 155 p.Google Scholar
  3. Atakora, K. W., Fosu, M., & Marthey, F. (2014). Modeling maize production towards site specific fertilizer recommendation in Ghana. Global Journal of Science Frontier Research: (D) Agriculture and Veterinary, 14(6), 70–81.Google Scholar
  4. Balogoun, I., Saïdou, A., Ahoton, L. E., Adjanohoun, A., Amadji, G. L., Ezui, G., Youl, S., Mando, A., Igué, A. M., & Sinsin ,B. A. (2013). Détermination des formules d’engrais et des périodes de semis pour une meilleure production du maïs (Zea mays L.) au Sud et au Centre Bénin. Bulletin de la Recherche Agronomique du Bénin (BRAB) Numéro Spécial Fertilité du maïs – Janvier, 1–11.Google Scholar
  5. Brassard, M. (2007). Développement d’outils diagnostiques de la nutrition azotée du maïs-grain pour une gestion optimale de l’engrais azoté. Mémoire de maîtrise. Université de Laval, Canada (105 p).Google Scholar
  6. Byerlee, D., & Heisey, P. W. (1997). Evolution of the African maize economy. In D. Byerlee, C. K. Eicher, & L. Rienner (Eds.), Africa’s emerging maize revolution. London: Lynne Rienner Publishers.Google Scholar
  7. Diallo, B., Dembélé, N., & Staatz, J. (2012). Compétitivité du maïs local en Afrique de l’Ouest depuis la hausse des prix alimentaires mondiaux. PRESAO. Résultats de recherche N° 2-2012-5, 13 p.Google Scholar
  8. DeJonge, K. C., Kaleita, A. L., & Thorp, K. R. (2007). Simulating the effects of spatially variable irrigation on corn yields, costs, and revenue in Iowa. Agricultural Water Management, 92(1–2), 99–109.CrossRefGoogle Scholar
  9. Du Toit, A. S., Booysen, J., & Human, H. H. (2001). Use of linear regression and a correlation matrix to evaluate CERES3 (Maize). In J. W. White, P. R. Grace (eds.), Modeling extremes of wheat and maize crop performance in the tropics. Proceedings of a workshop. CIMMYT, El Batan (Mexico), 19–22 Apr, Mexico, D.F. CIMMYT.Google Scholar
  10. Dugué, P. (2010). Etude d’évaluation environnementale et du développement de systèmes de production durables dans le cadre des projets de soutien à la production vivrière (Bénin, Togo, Ghana). FARM CIRAD, Ghana, 135 p.Google Scholar
  11. Dzotsi, K. (2002). Application du modèle CERES-maize de DSSAT à l’analyse de stratégies de semis pour le maïs (Zea mays L.) dans les conditions de Sévé-Kpota (p. 92). Lomé: Mémoire d'Ingénieur Agronome, Université de Lomé-Ecole Supérieure d’Agronomie.Google Scholar
  12. Dzotsi, K., Agboh-Noaméshie, A., Struif Bontkes, T. E., Singh, U., & Dejean, P. (2003). Using DSSAT to derive optimum combinations of cultivar and sowing date for maize in southern Togo. In T. E. Struif Bontkes & M. C. S. Wopereis (Eds.), Decision support tools for smallholder agriculture in Sub-Saharan Africa: Apractical guide (pp. 100–113). Wageningen: IFDC/CTA.Google Scholar
  13. Ezui, G., Igué, A. M., Attiogbe, P., Mando, A., Sogbedji, J. M., Pare, T., Youl, S., Wilkens, P., Singh, U., & Gist, O. (2011). Mise à jour de recommandations d’engrais pour la production du maïs en Afrique de l’Ouest: Cas du Bénin. Poster, IFDC Lomé, Togo.Google Scholar
  14. FAO. (2006). World reference base for soil ressources. 2nd edition. World Soil Ressources Reports N 103. Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  15. FAOSTAT. (2004). Statistical database. www.aginternetwork.org. Accessed 20 May 2015.
  16. FAOSTAT. (2007). Statistical database. www.aginternetwork.org. Accessed 20 May 2015.
  17. FAOSTAT. (2013). Statistical database. www.aginternetwork.org. Accessed 20 May 2015.
  18. Fosu M, Buah SS, Kanton RAL, Agyare WA (2012) Modeling maize response to mineral fertilizer on silty clay loam in the Northern Savanna Zone of Ghana using DSSAT model. In: Kihara J et al. (eds.) Improving soil fertility recommendations in Africa using the Decision Support System for Agrotechnology Transfer (DSSAT), Springer, Dordrecht. pp 157–168.Google Scholar
  19. Giller, K. E. (2002). Targeting management of organic resources and mineral fertilizers: can we match scientists’ fantaisies with farmers’ realities? In B. Vanlauwe, J. Diels, N. Sanginga, & R. Merckx (Eds.), Integrated plant nutrient management in Sub-Saharan Africa: from concept to practice (pp. 155–171). Wallingford: CAB International.Google Scholar
  20. He, J., Porter, C., Wilkens, P., Marin, F., Hu, H., & Jones, J. W. (2010). Guidelines for installing and running GLUE program. In G. Hoogenboom, J. W. Jones, P. W. Wilkens, C. H. Porter, K. J. Boote, L. A. Hunt, U. Singh, J. L. Lizaso, J. W. White, O. Uryasev, F. S. Royce, R. Ogoshi, A. J. Gijsman, & G. Y. Tsuji (Eds.), Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5 [CD-ROM]. Honolulu: University of Hawaii.Google Scholar
  21. Igué, A. M. (2000). The use of soil and terrain digital database for land evaluation procedure case study of central Benin. Dissertation, Hohenheimer Bodenkundliche Hefte. Heft N 58 University of Hohenheim, Stuttgart, Gemany.Google Scholar
  22. Igué, A. M., Adjanohoun, A., Saïdou, A., Ezui, G., Attiogbe, P., Kpagbin, G., Gotoechan-Hodonou, H., Youl, S., Pare, T., Balogoun, I., Ouedraogo, J., Dossa, E., Mando, A., & Sogbedji, J. M. (2013). Application et adaptation de l’approche intégrée DSSAT-SIG à la formulation des doses d’engrais pour la culture du maïs au Sud et au centre du Bénin (pp. 24–33). Bulletin de la Recherche Agronomique du Bénin (BRAB), Numéro spécial Fertilité du maïs.Google Scholar
  23. Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARC-WHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27, 337–350.CrossRefGoogle Scholar
  24. Jones, J. W., Hoogenboom, G., Porter, C. H., Boote, K. J., Batchelor, W. D., Hunt, L. A., Wilkens, P. W., Singh, U., & Gijsman, A. J. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18, 235–265.CrossRefGoogle Scholar
  25. Koné, B., Diatta, S., Saïdou, A., Akintayo, I., & Cissé, B. (2009). Réponses des variétés interspécifiques du riz de plateau aux applications de phosphate en zone de forêt au Nigeria. Canadian Journal of Soil Science, 89, 555–565.CrossRefGoogle Scholar
  26. Koné, B., Saïdou, A., Camara, M., & Diatta, S. (2010). Effet de différentes sources de phosphate sur le rendement du riz sur sols acides. Agronomie Africaine, 22(1), 55–63.CrossRefGoogle Scholar
  27. Loague, K., & Green, R. E. (1991). Statistical and graphical methods for evaluating solute transport models: Overview and application. Journal of Contaminant Hydrology, 7, 51–73. http://dx.doi./10.1016/0169-7722(91)90038-3.CrossRefGoogle Scholar
  28. Miao, Y., Mulla, D. J., Batchelor, W. D., Paz, J. O., Robert, P. C., & Wiebers, M. (2006). Evaluating management zone optimal nitrogen rates with a crop growth model. Agronomy Journal, 98(3), 545–553.CrossRefGoogle Scholar
  29. Nurudeen, A. R. (2011). Decision Support System for Agro-technology Transfer (DSSAT) model simulation of maize growth and yield response to NPK fertilizer application on a benchmark soil of Sudan savanna agro-ecological zone of Ghana. Master of science thesis, Department of Crop and Soil Sciences, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology Kumasi, 151 p.Google Scholar
  30. Pieri, C. (1989). Fertilité des terres de savanes: Bilan de trente ans de recherches et de Développement agricoles au sud du Sahara (444 p). Paris: Ministère de la Coopération et CIRAD-IRAT.Google Scholar
  31. Ritchie, J. T., & Alagarswamy, G. (2003). Model concepts to express genetic differences in maize yield components. Agronomy Journal, 95, 4–9.CrossRefGoogle Scholar
  32. Saïdou, A., Janssen, B., & Temminghoff, E. J. M. (2003). Effects of soil properties, mulch and NPK fertiliser on maize yields and nutrient budgets on ferralitic soils in Southern Benin. Agriculture, Ecosystems and Environment, 100, 265–273.CrossRefGoogle Scholar
  33. Saïdou, A., Kossou, D., Acakpo, C., Richards, P., & Kuyper, W. T. (2012). Effects of farmers’ practices of fertilizer application and land use types on subsequent maize yield and nutrient uptake in central Bénin. International Journal of Biological and Chemical Sciences, 6(1), 365–378.CrossRefGoogle Scholar
  34. Sanchez, P. A., Palm, C. A., Szott, L. T., Cuveas, E., & Lal, R. (1989). Organic input management in tropical agroecosystems. In D. C. Coleman, J. M. Oades, & G. Uehara (Eds.), Dynamics of soil organic matter in tropical ecosystems (pp. 125–152). Honolulu: University of Hawaii Press.Google Scholar
  35. Singh, U., & Wilkens, P. W. (2001). Simulating water and nutrient stress effects on phenological developments in maize. In J. W. White, P. R. Grace (eds.), Modeling extremes of wheat and maize crop performance in the tropics. Proceedings of a Workshop, CIMMYT, El Batán, Mexico, 19–22 Apr 1999.Google Scholar
  36. Singh, U., van Reuler, H., & Dejean, P. (1999). Using decision support systems to stimulate resource conserving practices. Paper presented at the MODSS’99 Conference, 1–6 Aug 1999, Brisbane, Australia.Google Scholar
  37. Singh, U., Diels, J., Henao, J., & Breman, H. (2001). Decision support systems for improving the application of integrated nutrient management technologies. In W. A. Payne, D. R. Keeney, & S. C. Rao (Eds.), Sustainability of agricultural systems in transition (pp. 305–321). Madison: Crop Science Society of America and Soil Science Society of America.Google Scholar
  38. Soler, C. M. T., Sentelhas, P. C., & Hoogenboom, G. (2007). Application of the CSM-CERES-Maize model for planting date evaluation and yield forecasting for maize grown off-season in a subtropical environment. European Journal of Agronomy, 27, 165–177.CrossRefGoogle Scholar
  39. Tetteh, M. F., & Nurudeen, R. A. (2015). Modeling site-specific fertilizer recommendations for maize production in the Sudan savannah agroecology of Ghana. African Journal of Agricultural Research, 10(11), 1136–1141. https://doi.org/10.5897/AJAR2013.7413.Google Scholar
  40. Thorp, K. R., Batchelor, W. D., Paz, J. O., Kaleita, A. L., & DeJonge, K. C. (2007). Using cross-validation to evaluate CERES-Maize yield simulations within a decision support system for precision agriculture. Transactions of ASAE, 50(4), 1467–1479.CrossRefGoogle Scholar
  41. Thorp, R. K., DeJonge, C. K., Kaleita, L. A., Batchelor, D. W., & Paz, O. J. (2008). Methodology for the use of DSSAT models for precision agriculture decision support. Computers and Electronics in Agriculture, 6(4), 276–285.CrossRefGoogle Scholar
  42. Toléba-Séidou, M., Biaou, G., Saïdou, A., & Zannou, A. (2015). Fonctionnement de la filière maïs au Bénin. Cahier du CBRST, Cotonou (Bénin), 7(1), 35–73.Google Scholar
  43. Weller, U. (2002). Land evaluation and land use planning for Southern Benin (West Africa) (166 p). Dissertation Hohenheimer Bodenkundliche Hefte. Heft N° 67, University of Hohenheim, Stuttgart, Gemany.Google Scholar
  44. Zeller, M., Sharma, M., Henry, C., & Lapenu, C. (2006). An operational method for assessing the poverty outreach performance of development policies and projects: Results of case studies in Africa, Asia, and Latin America. World Development, 34(3), 446–464.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Aliou Saïdou
    • 1
  • I. Balogoun
    • 1
  • E. L. Ahoton
    • 1
  • A. M. Igué
    • 2
  • S. Youl
    • 3
  • G. Ezui
    • 4
  • A. Mando
    • 5
  1. 1.Integrated Soil and Crop Management Research Unit, Laboratory of Soil Sciences, Department of Crop Sciences, Faculty of Agronomic SciencesUniversity of Abomey-CalaviCotonouBenin
  2. 2.Laboratoire des Sciences du Sol, Eau et Environnement, Centre de Recherche d’AgonkanmeyInstitut National des Recherches Agricoles du Bénin (LSSEE/INRAB)CotonouBenin
  3. 3.IFDC Burkina FasoOuagadougouBurkina Faso
  4. 4.International Plant Nutrition Institute (IPNI)IbadanNigeria
  5. 5.GRAD Consulting GroupOuagadougouBurkina Faso

Personalised recommendations