Advertisement

Role of Local Agro-minerals in Mineral Fertilizer Recommandations for Crops: Examples of Some West Africa Phosphate Rocks

  • François Lompo
  • Andre Bationo
  • Michel P. Sedogo
  • Vincent B. Bado
  • Victor Hien
  • Badiori Ouattara
Chapter

Abstract

One of the major constraints to enhanced crop productivity in West Africa is low soil fertility and particularly soil deficiency in available phosphorus (P). When P is limiting, crop production is greatly compromised even though the other nutrients are available in large amounts. The use of soluble P fertilizers is hampered by the cost of the P fertilizers commercially available, too high for resource-poor farmers. Therefore, exploitation of the locally available phosphate rock (PR) deposits represents an alternative for soil P supply to ensure mineral plant nutrition. The effectiveness of a particular PR depends mainly on its chemical and mineralogical composition, and to some extent on environmental conditions, crop type and management practices. This communication highlights some results of the research works that have been carried out in the region to enhance the direct use of PR in agriculture and how theses PR can be integrated in fertilizer recommendations for crops. Direct application of phosphate rocks may be an economical alternative to the use of the more expensive imported water-soluble P fertilizers for certain crops and soils.

Keywords

Agro minerals Crops Rock phosphate West Africa 

References

  1. Ag, B. M. (2004). Situation nutritionnelle en Afrique de l’Ouest: Analyse et perspectives pour l’action. Communication à l’Atelier sur l’Amélioration des systèmes à base de mil et de sorgho en Afrique de l’Ouest, Niamey/Niger, 27 au 30 janvier 2004, 9 p.Google Scholar
  2. Agence Française de Développement. (2008). Défis agricoles africains (414 p). (Ed.), Kartala Paris.Google Scholar
  3. Alliance for a Green revolution in Africa. (2014). Africa agriculture status report 2014 (p. 218), Climate change and smallholder agriculture in sub-saharan Africa, Nairobi, Kenya.Google Scholar
  4. Bado, B. V. (1991). Etude de l’efficacité du Burkina phosphate en riziculture (42 p). INERA.Google Scholar
  5. Bado, B.V. (1998). Utlisation du Burkinaphosphates en culture sur le riz irrigué: Résultats d’expérimentation; 65p.Google Scholar
  6. Banque Mondiale, IFDC, ICRAF. (1994). Feasibility of phosphate Rock use as a capital investment in Sub-Saharan Africa: Issues and opportunities, 145 p.Google Scholar
  7. Bationo, A. (2008). Integrated soil fertility management options for agricultural intensification in the sudano-shelian zone of West Africa (204 p), Academy Science Publisher/TSBF/CIAT.Google Scholar
  8. Bationo, A., & Kumar, K. A. (1999). Phosphorus use efficiency as related to sources of P fertilizers, rainfall, soil crop management in West African Semi-Arid Tropics. Presented at the workshop on food security in nutrient-stressed environments: Exploiting plant genetic capabilities. ICRISAT and Japan International Research Centre for Agricultural Sciences (JIRCAS), Pantacheru, Andhra Pradesh, India.Google Scholar
  9. Bationo, A., & Mokwunye, A. U. (2002). Meeting the phosphorus needs of the soils and crops of West Africa: The role of indigenous phosphate rocks. In B. Vanlauwe, J. Diels, N. Sanginga, & R. Merckx (Eds.), Integrated plant nutrient manage,ent in sub-saharan Africa: From concept to practice (pp. 209–224). Wallingford: CABI Publishing.Google Scholar
  10. Bationo, A., Chien, S. H., & Mokwunye, A. U. (1987). Chemical characteristics and agronomic values of some phosphate rocks in West Africa. In J. M. Menyonga, T. Bezuneh, & A. Youdeowei (Eds.), Food grain production in semi-arid Africa (pp. 399–407). Ouagadougou: Organisation of African Unit, SAFGRAD Ouagadougou.Google Scholar
  11. Bationo, A., & Mokwunye, A. U. (1991). Role of manure and crops residues in alleviating soil fertility constraints to crop production: With special reference to the Sahelian and Sudanian zones of west Africa. Fertilizer Research, 29, 117–125.Google Scholar
  12. Bationo, A., Ayuk, E., & Mokwunye, A. U. (1994). Long-term evaluation of Alternative phosphorus fertilizers for pearl millet production on the sandy Saherian soils of West Africa semi-arid tropics. In H. Gerner & A. U. Mokwunye (Eds.), Use of phosphate rock for sustainable agriculture in West Africa, International Fertilizer Development Cetre- Africa. Miscellaneous Fertilizer Studies No. 11 (pp. 42–53). Togo: Lome.Google Scholar
  13. Bationo, A., Wasma, B., Okeyo, J., Kihara, J., Bonzi, M., & Mokwunye, A. U. (2011). State of the art research on phosphate rocks in West Africa Drylands. 15 p.Google Scholar
  14. Bolan, N. S., & Hedley, M. J. (1990). Dissolution of phosphate rocks in soils. 2. Effect of pH on the dissolution and plant availability of phosphate rock in soil with pH dependent charge. Fertilizer Research, 24, 125–134.CrossRefGoogle Scholar
  15. Bonzi, M., Lompo, F., Ouandaogo, N., & Sedogo, M. P. (2011). Promoting uses of indigenous phosphate rock for soil fertility recapitalisation in the sahel: State of the knowledge on the rock phosphate of Burkina Faso. In A. Bationo et al. (Ed.), Innovations as keys to the green revolution in Africa. Exploring the scientific facts (pp 381–391). Springer Dordrecht Heidelberg London: New York.Google Scholar
  16. Boyer, Y. (1981). Dynamique du phosphore. In les sols ferrallitiques (pp. 180–192). Tome: ORSTOM.Google Scholar
  17. Boyer, J. (1982). Les sols ferralitiques: Facteurs de fertilité et utilisation des sols (p. 384). Paris: TX ORSTOM.Google Scholar
  18. Chien, S. H. (1977). Dissolution of phosphate rocks in a flooded acid soil. Soil Science Society of America Journal, 41, 1106–1109.CrossRefGoogle Scholar
  19. Chude, V. O., Olayiwola, S, O., Osho, A. O., & Daudu, C. K. (2008). Fertilizer use and management practices for crops in Nigeria (229 pp, 4th ed.). Federal Fertilizer Department; Federal Ministry of Agriculture and Rural Development: Abuja / Nigeria.Google Scholar
  20. Dabin, B. (1974). Evolution des phosphates en sols acides des regions tropicales. Science du sol, 2, 87–105.Google Scholar
  21. Diamond, R. B. (1978, March 20–23) Views on marketing of phosphate rock for direct application. In: Seminar on phosphate rock for direct application (pp 448–457). Haifa, Israel.Google Scholar
  22. Dixon, J., Gulliver, A., & Gibbon, D. (2001). Farming systems and poverty. Improving farmers livelihoods in a changeing world. FAO and World Bank, Rome/Washington, DC.Google Scholar
  23. FAO. (1999). Fertilizer yearbook 1998, FAO Statistics Series No. 150. Rome: FAO.Google Scholar
  24. FAO. (2004). Use of phosphate rocks for sustainable agriculture, FAO Fertilizer and Plant Nutrition Bulletin No. 13. Rome: FAO.Google Scholar
  25. Hammond, L. L. (1978, March 20–23). Agronomic measurements of phosphate rock effectiveness. In: Seminar on phosphate rock for direct application (pp. 147–155). Haifa, Israel.Google Scholar
  26. Henao, J., & Baanante, C. (2006). Agricultural production and soil nutrient mining in Africa: Implications for resources conservation and policy development (13 p, 4th Technical Bulletin), IFDC.Google Scholar
  27. Hien, V., Youl, S., Sanon, K., Traoré, O., & Kaboré, D. (1992). Rapport de synthèse des activités du volet expérimentation du projet engrais vivrier 1986–1991 (184 p), Résultats agronomiques et évaluation économique des formules d’engrais à moindre coût pour les céréales.Google Scholar
  28. Johnson, A. K. C. (1994). Les ressources agro minérales en Afrique de l’Ouest: Inventair eet valorisation. Communication au Séminaire “Emploi des ressources minérales locales pour une agriculture durable en Afrique de l’Ouest” IFDC-Afrique, Lomé, Togo, 21–23 novembre 1994; 35 p.Google Scholar
  29. Kouma, K. M. (2000). Etude des effets du Burkina phosphate sur la fertilité des sols et la production du sorgho dans la zone ouest du Burkina Faso (81 p), Mémoire de fin d’étude IPB/IDR.Google Scholar
  30. Lompo, F. (1993). Contribution à la valorisation des phosphates naturels du Burkina Faso. Etude des effets de l’interaction phosphate matière organique (249 p). Thèse Doct. Ing. Université National de Côte d’IvoireGoogle Scholar
  31. Lompo, F., Sedogo, M. P., & Assa, A. (1994). Effets à long terme des phosphates naturels de Kodjari (Burkina Faso) sur la production du sorgho et les bilans minéraux. Rev Res Amélior Agr Milieu Aride, 6, 163–178.Google Scholar
  32. McClellan, G. H., & Notholt, A. F. G. (1986). Phosphate deposits of tropical sub-Saharan Africa. In A. E. Mokwunye & P. L. G. Vlek (Eds.), Management of nitrogen and phosphorus fertilizers in sub-Saharan Africa, Developments in Plant and Soil Sciences 24 (pp. 173–224). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  33. Mokwunye, A. U. (1996). Recapitalizating west Africa’s soil fertility: Role of local phosphate rock. Agro-minerals: News in Brief, 19(4), 10–12.Google Scholar
  34. Mokwunye, A. U., & Bationo, A. (2011). Meeting the demands for plant nutrients for an African green revolution: the role of indigenous agrominerals. In A. Bationo et al. (Ed.), Innovations as keys to the green revolution in Africa. Exploring the scientific facts (pp. 19–30).Google Scholar
  35. Paul, I. (1998). Caractérisation physico-chimique et évaluation de l’efficacité agronomique de phosphates bruts ou partiellement acidifiés provenant d’Afrique de l’Ouest. Thèse de Doctorat INPL, Spécialité: Sciences agronomiques, Option: Sciences géologiques, 296 p.Google Scholar
  36. Pera, M. (2016). Les défis pour rendre les marchés financiers plus inclusifs. SIAM, Meknes, 27 avril 2016.Google Scholar
  37. Samaké, F. (1987). Contribution à la valorization du phosphate naturel de Tilemsi par l’action d’acides minérauxet de composes organiques humifiés (198 p), Thèse de Docteur Ingénieur; INPL, Nancy, France.Google Scholar
  38. Shrimpton, R. (2002, September 2–6). Nutrition, the millennium development goals and poverty reduction in ECOWAS countries. Communication of HKI/WB/WAHO in the Annual ECOWAS Nutrition Forum, Banjul.Google Scholar
  39. Tiffen, M., Mortimore, M., & Gichuki, F. (1994). More people, less erosion: Environmental recovery in Kenya. Chichester: John Wiley and Sons.Google Scholar
  40. Truong, B. 1984. Etude des phosphates naturels partiellement attaqués, Haute Volta et Togo. Compte rendu des résultats expérimentaux de 1983. Rapport IRAT/MPL. 20 p.Google Scholar
  41. Truong, B. (1989). Evaluation de l’efficacité agronomique des phosphates naturels provenant d’Afrique de l’Ouest. Thèse de Doctorat de l’INPL, Nancy, France, Spécialité: Sciences agronomiques, Option: Fertilisation des sols, 160 p.Google Scholar
  42. Truong, B., Pichot, J., & Beunard, P. (1978). Caractérisation et comparaison des phosphates naturels tricalciques d’Afrique de l’Ouest en vue de leur utilisation directe en agriculture. Agron Trop, 33, 136–145.Google Scholar
  43. Van Kauwenbergh, S. J. (2006). Fertilizer raw material resources of Africa. Washington, DC: International Fertilizer Development Centre (IFDC).Google Scholar
  44. Van Straaten, P. (2007). Agrogeology: The use of rocks for crops. Nairobi: ICRAF.Google Scholar
  45. Van Straaten, P. (2011). The geological basis of farming in Africa. In: Bationo A et al (Ed.), Innovations as keys to the green revolution in Africa. Exploring the scientific facts (pp. 31–47).Google Scholar
  46. World resources Institute. (2014). World resources report 2013–2014: Creating a sustainable food future. Washington, DC: World resources Institute.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • François Lompo
    • 1
  • Andre Bationo
    • 2
  • Michel P. Sedogo
    • 1
  • Vincent B. Bado
    • 3
  • Victor Hien
    • 1
  • Badiori Ouattara
    • 1
  1. 1.Institut de l’Environnement et de Recherches Agricoles (INERA)Ouagadougou 04Burkina Faso
  2. 2.International Fertilizer Development Center (IFDC)AccraGhana
  3. 3.International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)NiameyNiger

Personalised recommendations