Advertisement

Soil Organic Carbon and Nitrogen in Agroforestry Systems in Sub-Saharan Africa: A Review

  • J. Bayala
  • A. Kalinganire
  • G. W. Sileshi
  • J. E. Tondoh
Chapter

Abstract

Effective nutrient management is a key to sustainable agroforestry systems, chiefly in the current context of changing and variable climate along with increasing uncertainties of production systems to meet the needs for food security. The diversity of agroforestry systems throughout Sub-Saharan Africa results in a diverse nutrient management models with specific underlying mechanisms. Over the past decades several studies have been conducted on nutrient dynamics in agroforestry practices in various farming systems across a large range of agro-ecological conditions. We conducted a meta-analysis of the published data of four of these practices (alley cropping, improved fallow, mulching and parkland) for sub-Saharan region to examine their contribution to soil organic carbon and nitrogen content. The results of this analysis revealed an increase in both SOC and N contents of these practices over their corresponding treeless control plots. C to N ratios showed the higher values in the mulching and parkland practice as opposed to the alley cropping, which is nitrogen fixing species-based agroforestry technology. It has therefore been hypothesized that increase SOC may contribute to the provision of important supporting ecosystem services (nutrient inputs, the enhancement of internal flows, the decrease of nutrient losses, etc.). Therefore, agroforestry as a science hold promising solutions for alleviating soil fertility problems and achieving sustainable land management provided (1) resources sharing between components are better understood and (2) pathways for sustainable nutrient management are context-oriented and made available for users and policy makers.

Keywords

Agroforestry practices Farming systems Socio-ecological conditions Validity domains Up-scaling 

Notes

Acknowledgements

This part of ICRAF’s research is financed by the CGIAR Research Programs on Dryland Systems and Climate Change Agriculture and Food Security. We thank anonymous reviewers of earlier versions of the draft.

References

  1. Andriulo, A., Guérif, J., & Mary, B. (1999). Evolution of soil carbon with various cropping sequences on the rolling pampas. Determination of carbon origin using variations in natural 13C abundance. Agronomie, 19, 349–364.CrossRefGoogle Scholar
  2. Ayuke, F. O., Brussaard, L., Vanlauwe, B., Six, J., Lelei, D. K., Kibunja, C. N., & Pulleman, M. M. (2011). Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology, 48, 53–62.CrossRefGoogle Scholar
  3. Bationo, A., & Buerkert, A. (2001). Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems, 61, 131–142.CrossRefGoogle Scholar
  4. Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B., & Kimetu, J. (2007). Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agricultural Systems, 94, 13–25.CrossRefGoogle Scholar
  5. Bayala, J., & Ouédraogo, S. J. (2008). Agroforestry and soil fertility maintenance. In A. Bationo, R. Tabo, B. S. Waswa, J. Okeyo, M. Fosu, & S. Kabore (Eds.), Synthesis of soil, water and nutrient management research in the Volta Basin (pp. 43–66). Nairobi: Ecomedia.Google Scholar
  6. Bayala, J., Mando, A., Teklehaimanot, Z., & Ouédraogo, S. J. (2005). Decomposition and nutrient release of leaf mulches of karité (Vitellaria paradoxa) and néré (Parkia biglobosa) under semi-arid conditions in Burkina Faso, West Africa. Soil Biology and Biochemistry, 37, 533–539.CrossRefGoogle Scholar
  7. Bayala, J., Balesdent, J., Marol, C., Zapata, F., Teklehaimanot, Z., & Ouédraogo, S. J. (2006). Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutrient Cycling in Agroecosystems, 76, 193–201.CrossRefGoogle Scholar
  8. Bayala, J., van Noordwijk, M., Lusiana, B., Kasanah, N., Teklehaimanot, Z., & Ouédraogo, S. J. (2008). Separating the tree-soil-crop interactions in agroforestry parkland systems in Saponé (Burkina Faso) using WaNuLCAS. Advances in Agroforestry, 4, 296–308.Google Scholar
  9. Bayala, J., Sileshi, G. W., Coe, R., Kalinganire, A., Tchoundjeu, Z., Sinclair, F., & Garrity, D. (2012). Cereal yield response to conservation agriculture practices in drylands of West Africa: A quantitative synthesis. Journal of Arid Environments, 78, 13–25.CrossRefGoogle Scholar
  10. Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganire, A., & Ouédraogo, S. J. (2014). Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environment Sustainability, 6, 28–34.CrossRefGoogle Scholar
  11. Carsan, S., Stroebel, A., Dawson, I., Kindt, R., Mbow, C., Mowo, J., & Jamnadass, R. (2014). Can agroforestry option values improve the functioning of drivers of agricultural intensification in Africa? Current Opinion in Environment Sustainability, 6, 35–40.CrossRefGoogle Scholar
  12. Doré, T., Makowski, D., Malézieux, E., Munier-Jolain, N., Tchamitchian, M., & Tittonell, P. (2011). Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 34, 197–210.CrossRefGoogle Scholar
  13. Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., Larwanou, M., & Bayala, J. (2010). Evergreen agriculture: A robust approach to sustainable food security in Africa. Food Security, 2, 197–214.CrossRefGoogle Scholar
  14. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman & Hall.Google Scholar
  15. Gijsbers, H. J. M., Kessler, J. J., & Knevel, M. K. (1994). Dynamics and natural regeneration of woody species in farmed parklands in the Sahel region (Province of Passore, Burkina Faso). Forest Ecology and Management, 64, 1–12.CrossRefGoogle Scholar
  16. Graves, A., Matthews, R., & Waldie, K. (2004). Low external input technologies for livelihood improvement in subsistence agriculture. Advances in Agronomy, 82, 473–555.CrossRefGoogle Scholar
  17. Hauser, S., Asawalam, D. O., & Vanlauwe, B. (1998). Spatial and temporal gradients of earthworm casting activity in alley cropping systems. Agroforestry Systems, 41, 127–137.CrossRefGoogle Scholar
  18. Hauser, S., Norgrove, L., Asawalam, D., & Schulz, S. (2012). Effect of land use change, cropping systems and soil type on earthworm cast production in West and Central Africa. European Journal of Soil Biology, 49, 47–54.CrossRefGoogle Scholar
  19. ICRAF. (2013). World Agroforestry Centre (ICRAF) strategy 2013–2022. Nairobi: ICRAF.Google Scholar
  20. Jerneck, A., & Olsson, L. (2013). More than trees! Understanding the agroforestry adoption gap in subsistence agriculture: Insights from narrative walks in Kenya. Journal of Rural Studies, 32, 114–125.CrossRefGoogle Scholar
  21. Jones, M., Sinclair, F. L., & Grime, V. L. (1998). Effects of tree species and crown pruning on root length and soil water content in semi-arid agroforestry. Plant and Soil, 201, 197–207.CrossRefGoogle Scholar
  22. Kang, B. T. (1993). Alley cropping: Past achievements and future directions. Agroforestry Systems, 23, 141–155.CrossRefGoogle Scholar
  23. Kater, L. J. M., Kante, S., & Budelman, A. (1992). Karité (Vitellaria paradoxa) and néré (Parkia biglobosa) associated with crops in south Mali. Agroforestry Systems, 18, 89–105.CrossRefGoogle Scholar
  24. Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36, S33–S39.CrossRefGoogle Scholar
  25. Le, D. H., Smith, C., Herbohn, J., & Harrison, S. (2012). More than just trees: Assessing reforestation success in tropical developing countries. Journal of Rural Studies, 28, 5–19.CrossRefGoogle Scholar
  26. Lufafa, A., Bolte, J., Wright, D., Khouma, M., Diedhiou, I., Dick, R. P., Kizito, F., Dossa, E., & Noller, J. S. (2008). Regional carbon stocks and dynamics in native woody shrub communities of Senegal’s peanut basin. Agriculture, Ecosystems & Environment, 128, 1–11.CrossRefGoogle Scholar
  27. Maranz, S. (2009). Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. Journal of Biogeography, 36, 1181–1193.CrossRefGoogle Scholar
  28. Moebius-Clune, B. N., van Es, H. M., Idowu, O. J., Schindelbeck, R. R., Kimetu, J. M., Ngoze, S., Lehmann, J., & Kinyangi, J. M. (2011). Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agriculture, Ecosystems & Environment, 141, 86–99.CrossRefGoogle Scholar
  29. Mortimore, M., & Turner, B. (2005). Does the Sahelian smallholder’s management of woodland, farm trees, rangeland support the hypothesis of human-induced desertification? Journal of Arid Environments, 63, 567–595.CrossRefGoogle Scholar
  30. Nair, R. P. K., & Nair, V. D. (2014). ‘Solid-fluid-gas’: The state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion in Environment Sustainability, 6, 22–27.CrossRefGoogle Scholar
  31. Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., DeClerck, F., De Pinto, A., Gulledge, J., Hellin, J., Herrero, M., Jarvis, A., LeZaks, D., Meinke, H., Rosenstock, T., Scholes, M., Scholes, R., Vermeulen, S., Wollenberg, E., & Zougmoré, R. (2013). Beyond climate-smart agriculture: Toward safe operating spaces for global food systems. Agriculture and Food Security, 2, 12. http://www.agricultureandfoodsecurity.com/content/2/1/12.CrossRefGoogle Scholar
  32. Palm, C. A., & Sanchez, P. A. (1990). Decomposition and nutrient release patterns of leaves of three tropical legumes. Biotropica, 22, 330–338.CrossRefGoogle Scholar
  33. Palm, C. A., & Sanchez, P. A. (1991). Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biology and Biochemistry, 23, 83–88.CrossRefGoogle Scholar
  34. Reij, C., Tappan, G., & Smale, M. (2009). Re-greening the Sahel: Farmer-led innovation in Burkina Faso and Niger. In Agroenvironmental transformation in the Sahel: Another kind of “Green Revolution” IFPRI discussion paper. Washington, DC: International Food Policy Research Institute.Google Scholar
  35. Rosenstock, T. S., Tully, K. L., Arias-Navarro, C., Neufeldt, H., Butterbach-Bahl, K., & Verchot, L. V. (2014). Agroforestry with N2-fixing trees: Sustainable development’s friend or foe? Current Opinion in Environment Sustainability, 6, 15–21.CrossRefGoogle Scholar
  36. Sanchez, P. A. (1999). Improved fallows come of age in the tropics. Agroforestry Systems, 47, 3–12.CrossRefGoogle Scholar
  37. Sileshi, G., Akinnifesi, F. K., Ajayi, O. C., & Place, K. (2008). Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant and Soil, 307, 1–19.CrossRefGoogle Scholar
  38. Sileshi, G., Akinnifesi, F. K., Debusho, L. K., Beedy, T., Ajayi, O. C., & Mong’omba, S. (2010). Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Research, 11, 1–13.CrossRefGoogle Scholar
  39. Takimoto, A., Nair, V. D., & Nair, R. P. K. (2009). Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel. Agroforestry Systems, 76, 11–25.CrossRefGoogle Scholar
  40. Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90.CrossRefGoogle Scholar
  41. Tossah, B. K., Zamba, D. K., Vanlauwe, B., Sanginga, N., Lyasse, O., Diels, J., & Merckx, R. (1999). Alley cropping in the moist savanna of West-Africa: II. Impact on soil productivity in a North-to-South transect in Togo. Agroforestry Systems, 42, 229–244.CrossRefGoogle Scholar
  42. Vågen, T. G., Lal, R., & Singh, B. R. (2005). Carbon sequestration in Sub-Saharan Africa: A review. Land Degradation and Development, 16, 53–71.CrossRefGoogle Scholar
  43. Vanlauwe, B., Sanginga, N., & Merckx, R. (1998). Recovery of Leucaena and Dactyladenia residue 15N in alley cropping systems. Soil Science Society of America, 62, 454–460.CrossRefGoogle Scholar
  44. Wachendorf, C., Irmler, U., & Blume, H. P. (1997). Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions. In G. Cadisch & K. E. Giller (Eds.), Driven by nature. Plant litter quality and decomposition (pp. 135–144). Cambridge: CAB International, University Press.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • J. Bayala
    • 1
  • A. Kalinganire
    • 1
  • G. W. Sileshi
    • 2
  • J. E. Tondoh
    • 3
  1. 1.World Agroforestry Centre (ICRAF), ICRAF-WCA/Sahel NodeBamakoMali
  2. 2.LusakaZambia
  3. 3.West African Science Service Center on Climate Change and Adapted Land Use (WASCAL)Ouagadougou 06Burkina Faso

Personalised recommendations