Skip to main content

Abstract

Effective nutrient management is a key to sustainable agroforestry systems, chiefly in the current context of changing and variable climate along with increasing uncertainties of production systems to meet the needs for food security. The diversity of agroforestry systems throughout Sub-Saharan Africa results in a diverse nutrient management models with specific underlying mechanisms. Over the past decades several studies have been conducted on nutrient dynamics in agroforestry practices in various farming systems across a large range of agro-ecological conditions. We conducted a meta-analysis of the published data of four of these practices (alley cropping, improved fallow, mulching and parkland) for sub-Saharan region to examine their contribution to soil organic carbon and nitrogen content. The results of this analysis revealed an increase in both SOC and N contents of these practices over their corresponding treeless control plots. C to N ratios showed the higher values in the mulching and parkland practice as opposed to the alley cropping, which is nitrogen fixing species-based agroforestry technology. It has therefore been hypothesized that increase SOC may contribute to the provision of important supporting ecosystem services (nutrient inputs, the enhancement of internal flows, the decrease of nutrient losses, etc.). Therefore, agroforestry as a science hold promising solutions for alleviating soil fertility problems and achieving sustainable land management provided (1) resources sharing between components are better understood and (2) pathways for sustainable nutrient management are context-oriented and made available for users and policy makers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Andriulo, A., Guérif, J., & Mary, B. (1999). Evolution of soil carbon with various cropping sequences on the rolling pampas. Determination of carbon origin using variations in natural 13C abundance. Agronomie, 19, 349–364.

    Article  Google Scholar 

  • Ayuke, F. O., Brussaard, L., Vanlauwe, B., Six, J., Lelei, D. K., Kibunja, C. N., & Pulleman, M. M. (2011). Soil fertility management: Impacts on soil macrofauna, soil aggregation and soil organic matter allocation. Applied Soil Ecology, 48, 53–62.

    Article  Google Scholar 

  • Bationo, A., & Buerkert, A. (2001). Soil organic carbon management for sustainable land use in Sudano-Sahelian West Africa. Nutrient Cycling in Agroecosystems, 61, 131–142.

    Article  Google Scholar 

  • Bationo, A., Kihara, J., Vanlauwe, B., Waswa, B., & Kimetu, J. (2007). Soil organic carbon dynamics, functions and management in West African agro-ecosystems. Agricultural Systems, 94, 13–25.

    Article  Google Scholar 

  • Bayala, J., & Ouédraogo, S. J. (2008). Agroforestry and soil fertility maintenance. In A. Bationo, R. Tabo, B. S. Waswa, J. Okeyo, M. Fosu, & S. Kabore (Eds.), Synthesis of soil, water and nutrient management research in the Volta Basin (pp. 43–66). Nairobi: Ecomedia.

    Google Scholar 

  • Bayala, J., Mando, A., Teklehaimanot, Z., & Ouédraogo, S. J. (2005). Decomposition and nutrient release of leaf mulches of karité (Vitellaria paradoxa) and néré (Parkia biglobosa) under semi-arid conditions in Burkina Faso, West Africa. Soil Biology and Biochemistry, 37, 533–539.

    Article  CAS  Google Scholar 

  • Bayala, J., Balesdent, J., Marol, C., Zapata, F., Teklehaimanot, Z., & Ouédraogo, S. J. (2006). Relative contribution of trees and crops to soil carbon content in a parkland system in Burkina Faso using variations in natural 13C abundance. Nutrient Cycling in Agroecosystems, 76, 193–201.

    Article  Google Scholar 

  • Bayala, J., van Noordwijk, M., Lusiana, B., Kasanah, N., Teklehaimanot, Z., & Ouédraogo, S. J. (2008). Separating the tree-soil-crop interactions in agroforestry parkland systems in Saponé (Burkina Faso) using WaNuLCAS. Advances in Agroforestry, 4, 296–308.

    Google Scholar 

  • Bayala, J., Sileshi, G. W., Coe, R., Kalinganire, A., Tchoundjeu, Z., Sinclair, F., & Garrity, D. (2012). Cereal yield response to conservation agriculture practices in drylands of West Africa: A quantitative synthesis. Journal of Arid Environments, 78, 13–25.

    Article  Google Scholar 

  • Bayala, J., Sanou, J., Teklehaimanot, Z., Kalinganire, A., & Ouédraogo, S. J. (2014). Parklands for buffering climate risk and sustaining agricultural production in the Sahel of West Africa. Current Opinion in Environment Sustainability, 6, 28–34.

    Article  Google Scholar 

  • Carsan, S., Stroebel, A., Dawson, I., Kindt, R., Mbow, C., Mowo, J., & Jamnadass, R. (2014). Can agroforestry option values improve the functioning of drivers of agricultural intensification in Africa? Current Opinion in Environment Sustainability, 6, 35–40.

    Article  Google Scholar 

  • Doré, T., Makowski, D., Malézieux, E., Munier-Jolain, N., Tchamitchian, M., & Tittonell, P. (2011). Facing up to the paradigm of ecological intensification in agronomy: Revisiting methods, concepts and knowledge. European Journal of Agronomy, 34, 197–210.

    Article  Google Scholar 

  • Garrity, D. P., Akinnifesi, F. K., Ajayi, O. C., Weldesemayat, S. G., Mowo, J. G., Kalinganire, A., Larwanou, M., & Bayala, J. (2010). Evergreen agriculture: A robust approach to sustainable food security in Africa. Food Security, 2, 197–214.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman & Hall.

    Google Scholar 

  • Gijsbers, H. J. M., Kessler, J. J., & Knevel, M. K. (1994). Dynamics and natural regeneration of woody species in farmed parklands in the Sahel region (Province of Passore, Burkina Faso). Forest Ecology and Management, 64, 1–12.

    Article  Google Scholar 

  • Graves, A., Matthews, R., & Waldie, K. (2004). Low external input technologies for livelihood improvement in subsistence agriculture. Advances in Agronomy, 82, 473–555.

    Article  Google Scholar 

  • Hauser, S., Asawalam, D. O., & Vanlauwe, B. (1998). Spatial and temporal gradients of earthworm casting activity in alley cropping systems. Agroforestry Systems, 41, 127–137.

    Article  Google Scholar 

  • Hauser, S., Norgrove, L., Asawalam, D., & Schulz, S. (2012). Effect of land use change, cropping systems and soil type on earthworm cast production in West and Central Africa. European Journal of Soil Biology, 49, 47–54.

    Article  Google Scholar 

  • ICRAF. (2013). World Agroforestry Centre (ICRAF) strategy 2013–2022. Nairobi: ICRAF.

    Google Scholar 

  • Jerneck, A., & Olsson, L. (2013). More than trees! Understanding the agroforestry adoption gap in subsistence agriculture: Insights from narrative walks in Kenya. Journal of Rural Studies, 32, 114–125.

    Article  Google Scholar 

  • Jones, M., Sinclair, F. L., & Grime, V. L. (1998). Effects of tree species and crown pruning on root length and soil water content in semi-arid agroforestry. Plant and Soil, 201, 197–207.

    Article  CAS  Google Scholar 

  • Kang, B. T. (1993). Alley cropping: Past achievements and future directions. Agroforestry Systems, 23, 141–155.

    Article  Google Scholar 

  • Kater, L. J. M., Kante, S., & Budelman, A. (1992). Karité (Vitellaria paradoxa) and néré (Parkia biglobosa) associated with crops in south Mali. Agroforestry Systems, 18, 89–105.

    Article  Google Scholar 

  • Lal, R. (2011). Sequestering carbon in soils of agro-ecosystems. Food Policy, 36, S33–S39.

    Article  Google Scholar 

  • Le, D. H., Smith, C., Herbohn, J., & Harrison, S. (2012). More than just trees: Assessing reforestation success in tropical developing countries. Journal of Rural Studies, 28, 5–19.

    Article  Google Scholar 

  • Lufafa, A., Bolte, J., Wright, D., Khouma, M., Diedhiou, I., Dick, R. P., Kizito, F., Dossa, E., & Noller, J. S. (2008). Regional carbon stocks and dynamics in native woody shrub communities of Senegal’s peanut basin. Agriculture, Ecosystems & Environment, 128, 1–11.

    Article  CAS  Google Scholar 

  • Maranz, S. (2009). Tree mortality in the African Sahel indicates an anthropogenic ecosystem displaced by climate change. Journal of Biogeography, 36, 1181–1193.

    Article  Google Scholar 

  • Moebius-Clune, B. N., van Es, H. M., Idowu, O. J., Schindelbeck, R. R., Kimetu, J. M., Ngoze, S., Lehmann, J., & Kinyangi, J. M. (2011). Long-term soil quality degradation along a cultivation chronosequence in western Kenya. Agriculture, Ecosystems & Environment, 141, 86–99.

    Article  CAS  Google Scholar 

  • Mortimore, M., & Turner, B. (2005). Does the Sahelian smallholder’s management of woodland, farm trees, rangeland support the hypothesis of human-induced desertification? Journal of Arid Environments, 63, 567–595.

    Article  Google Scholar 

  • Nair, R. P. K., & Nair, V. D. (2014). ‘Solid-fluid-gas’: The state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Current Opinion in Environment Sustainability, 6, 22–27.

    Article  Google Scholar 

  • Neufeldt, H., Jahn, M., Campbell, B. M., Beddington, J. R., DeClerck, F., De Pinto, A., Gulledge, J., Hellin, J., Herrero, M., Jarvis, A., LeZaks, D., Meinke, H., Rosenstock, T., Scholes, M., Scholes, R., Vermeulen, S., Wollenberg, E., & Zougmoré, R. (2013). Beyond climate-smart agriculture: Toward safe operating spaces for global food systems. Agriculture and Food Security, 2, 12. http://www.agricultureandfoodsecurity.com/content/2/1/12.

    Article  Google Scholar 

  • Palm, C. A., & Sanchez, P. A. (1990). Decomposition and nutrient release patterns of leaves of three tropical legumes. Biotropica, 22, 330–338.

    Article  Google Scholar 

  • Palm, C. A., & Sanchez, P. A. (1991). Nitrogen release from the leaves of some tropical legumes as affected by their lignin and polyphenolic contents. Soil Biology and Biochemistry, 23, 83–88.

    Article  CAS  Google Scholar 

  • Reij, C., Tappan, G., & Smale, M. (2009). Re-greening the Sahel: Farmer-led innovation in Burkina Faso and Niger. In Agroenvironmental transformation in the Sahel: Another kind of “Green Revolution” IFPRI discussion paper. Washington, DC: International Food Policy Research Institute.

    Google Scholar 

  • Rosenstock, T. S., Tully, K. L., Arias-Navarro, C., Neufeldt, H., Butterbach-Bahl, K., & Verchot, L. V. (2014). Agroforestry with N2-fixing trees: Sustainable development’s friend or foe? Current Opinion in Environment Sustainability, 6, 15–21.

    Article  Google Scholar 

  • Sanchez, P. A. (1999). Improved fallows come of age in the tropics. Agroforestry Systems, 47, 3–12.

    Article  Google Scholar 

  • Sileshi, G., Akinnifesi, F. K., Ajayi, O. C., & Place, K. (2008). Meta-analysis of maize yield response to woody and herbaceous legumes in sub-Saharan Africa. Plant and Soil, 307, 1–19.

    Article  CAS  Google Scholar 

  • Sileshi, G., Akinnifesi, F. K., Debusho, L. K., Beedy, T., Ajayi, O. C., & Mong’omba, S. (2010). Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Research, 11, 1–13.

    Article  Google Scholar 

  • Takimoto, A., Nair, V. D., & Nair, R. P. K. (2009). Contribution of trees to soil carbon sequestration under agroforestry systems in the West African Sahel. Agroforestry Systems, 76, 11–25.

    Article  Google Scholar 

  • Tittonell, P., & Giller, K. E. (2013). When yield gaps are poverty traps: The paradigm of ecological intensification in African smallholder agriculture. Field Crops Research, 143, 76–90.

    Article  Google Scholar 

  • Tossah, B. K., Zamba, D. K., Vanlauwe, B., Sanginga, N., Lyasse, O., Diels, J., & Merckx, R. (1999). Alley cropping in the moist savanna of West-Africa: II. Impact on soil productivity in a North-to-South transect in Togo. Agroforestry Systems, 42, 229–244.

    Article  Google Scholar 

  • Vågen, T. G., Lal, R., & Singh, B. R. (2005). Carbon sequestration in Sub-Saharan Africa: A review. Land Degradation and Development, 16, 53–71.

    Article  Google Scholar 

  • Vanlauwe, B., Sanginga, N., & Merckx, R. (1998). Recovery of Leucaena and Dactyladenia residue 15N in alley cropping systems. Soil Science Society of America, 62, 454–460.

    Article  CAS  Google Scholar 

  • Wachendorf, C., Irmler, U., & Blume, H. P. (1997). Relationships between litter fauna and chemical changes of litter during decomposition under different moisture conditions. In G. Cadisch & K. E. Giller (Eds.), Driven by nature. Plant litter quality and decomposition (pp. 135–144). Cambridge: CAB International, University Press.

    Google Scholar 

Download references

Acknowledgements

This part of ICRAF’s research is financed by the CGIAR Research Programs on Dryland Systems and Climate Change Agriculture and Food Security. We thank anonymous reviewers of earlier versions of the draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Bayala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bayala, J., Kalinganire, A., Sileshi, G.W., Tondoh, J.E. (2018). Soil Organic Carbon and Nitrogen in Agroforestry Systems in Sub-Saharan Africa: A Review. In: Bationo, A., Ngaradoum, D., Youl, S., Lompo, F., Fening, J. (eds) Improving the Profitability, Sustainability and Efficiency of Nutrients Through Site Specific Fertilizer Recommendations in West Africa Agro-Ecosystems. Springer, Cham. https://doi.org/10.1007/978-3-319-58789-9_4

Download citation

Publish with us

Policies and ethics