Skip to main content

Energy Stable Model Order Reduction for the Allen-Cahn Equation

  • Chapter
  • First Online:
Model Reduction of Parametrized Systems

Part of the book series: MS&A ((MS&A,volume 17))

Abstract

The Allen-Cahn equation is a gradient system, where the free-energy functional decreases monotonically in time. We develop an energy stable reduced order model (ROM) for a gradient system, which inherits the energy decreasing property of the full order model (FOM). For the space discretization we apply a discontinuous Galerkin (dG) method and for time discretization the energy stable average vector field (AVF) method. We construct ROMs with proper orthogonal decomposition (POD)-greedy adaptive sampling of the snapshots in time and evaluating the nonlinear function with greedy discrete empirical interpolation method (DEIM). The computational efficiency and accuracy of the reduced solutions are demonstrated numerically for the parametrized Allen-Cahn equation with Neumann and periodic boundary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ali, M., Urban, K.: Reduced basis exact error estimates with wavelets. In: Karasözen, B., Manguğlu, M., Tezer-Sezgin, M., Göktepe, S., Uğur, Ö. (eds.) Numerical Mathematics and Advanced Applications ENUMATH 2015, Lecture Notes in Computational Science and Engineering, vol. 112, pp. 359–367. Springer International Publishing, Switzerland (2016)

    Chapter  Google Scholar 

  2. Allen, M.S., Cahn, J.W.: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall. 27(6), 1085–1095 (1979)

    Article  Google Scholar 

  3. Antil, H., Heinkenschloss, M., Sorensen, D.C.: Application of the discrete empirical interpolation method to reduced order modeling of nonlinear and parametric systems. In: Quarteroni, A., Rozza, G. (eds.) Reduced Order Methods for Modeling and Computational Reduction, MS and A. Model. Simul. Appl., vol. 9, pp. 101–136. Springer Italia, Milan (2014)

    Google Scholar 

  4. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 724–760 (1982)

    Article  MathSciNet  Google Scholar 

  5. Arnold, D., Brezzi, F., Cockborn, B., Marini, L.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39, 1749–1779 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barrault, M., Maday, Y., Nguyen, N.C., Patera, A.T.: An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations. C. R. Math. 339(9), 667–672 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barrett, J.W., Blowey, J.F.: Finite element approximation of the Cahn–Hilliard equation with concentration dependent mobility. Math. Comput. 68(226), 487–517 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Benner, P., Gugercin, S., Willcox, K.: A survey of projection-based model reduction methods for parametric dynamical systems. SIAM Rev. 57(4), 483–531 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Celledoni, E., Grimm, V., McLachlan, R., McLaren, D., O’Neale, D., Owren, B., Quispel, G.: Preserving energy resp. dissipation in numerical {PDEs} using the “average vector field” method. J. Comput. Phys. 231(20), 6770–6789 (2012)

    Google Scholar 

  10. Chaturantabut, S., Sorensen, D.C.: A state space error estimate for POD–DEIM nonlinear model reduction. SIAM J. Numer. Anal. 50(1), 46–63 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chaturantabut, S., Sorensen, D.C.: Nonlinear model reduction via discrete empirical interpolation. SIAM J. Sci. Comput. 32(5), 2737–2764 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Choi, J.W., Lee, H.G., Jeong, D., Kim, J.: An unconditionally gradient stable numerical method for solving the Allen–Cahn equation. Phys. A Stat. Mech. Appl. 388(9), 1791–1803 (2009)

    Article  MathSciNet  Google Scholar 

  13. Christlieb, A., Jones, J., Promislow, K., Wetton, B., Willoughby, M.: High accuracy solutions to energy gradient flows from material science models. J. Comput. Phys. 257, 193–215 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Clenshaw, C.W., Curtis, A.R.: A method for numerical integration on an automatic computer. Numer. Math. 2(1), 197–205 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  15. Drohmann, M., Haasdonk, B., Ohlberger, M.: Reduced basis approximation for nonlinear parametrized evolution equations based on empirical operator interpolation. SIAM J. Sci. Comput. 34(2), A937–A969 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Feng, X., Wu, H.j.: A posteriori error estimates and an adaptive finite element method for the Allen–Cahn equation and the mean curvature flow. J. Sci. Comput. 24(2), 121–146 (2005)

    Google Scholar 

  17. Feng, X., Song, H., Tang, T., Yang, J.: Nonlinear stability of the implicit–explicit methods for the Allen–Cahn equation. Inverse Problems Imaging 7(3), 679–695 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Feng, X., Tang, T., Yang, J.: Stabilized Crank-Nicolson/Adams-Bashforth schemes for phase field models. East Asian J. Appl. Math. 3, 59–80 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. Grepl, M.A.: Model order reduction of parametrized nonlinear reaction-diffusion systems. Comput. Chem. Eng. 43, 33–44 (2012)

    Article  Google Scholar 

  20. Grepl, M.A., Maday, Y., Nguyen, N.C., Patera, A.T.: Efficient reduced-basis treatment of nonaffine and nonlinear partial differential equations. ESAIM: M2AN 41(3), 575–605 (2007)

    Google Scholar 

  21. Guo, R., Ji, L., Xu, Y.: High order local discontinuous Galerkin methods for the Allen–Cahn equation: analysis and simulation. J. Comput. Math. 34, 135–158 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hairer, E.: Energy-preserving variant of collocation methods. J. Numer. Anal. Ind. Appl. Math. 5, 73–84 (2010)

    MathSciNet  MATH  Google Scholar 

  23. Ionita, A.C., Antoulas, A.C.: Data-driven parametrized model reduction in the loewner framework. SIAM J. Sci. Comput. 36(3), A984–A1007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kalashnikova, I., Barone, M.F.: Efficient non-linear proper orthogonal decomposition/Galerkin reduced order models with stable penalty enforcement of boundary conditions. Int. J. Numer. Methods Eng. 90(11), 1337–1362 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Karasözen, B., Kücükseyhan, T., Uzunca, M.: Structure preserving integration and model order reduction of skew-gradient reaction-diffusion systems. Ann. Oper. Res. 1–28 (2015)

    Google Scholar 

  26. Liu, F., Shen, J.: Stabilized semi-implicit spectral deferred correction methods for Allen–Cahn and Cahn–Hilliard equations. Math. Methods Appl. Sci. 38(18), 4564–4575 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Rivière, B.: Discontinuous Galerkin methods for solving elliptic and parabolic equations, Theory and implementation. SIAM (2008)

    Book  MATH  Google Scholar 

  28. Shen, J., Yang, X.: An efficient moving mesh spectral method for the phase-field model of two-phase flows. J. Comput. Phys. 228(8), 2978–2992 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Shen, J., Yang, X.: Numerical approximations of Allen-Cahn and Cahn-Hilliard equations. Discret. Contin. Dyn. Syst. A 28, 1669–1691 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shen, J., Tang, T., Yang, J.: On the maximum principle preserving schemes for the generalized Allen–Cahn equation. Commun. Math. Sci. 14, 1517–1534 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Song, H., Jiang, L., Li, Q.: A reduced order method for Allen–Cahn equations. J. Comput. Appl. Math. 292, 213–229 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  32. Ullmann, S., Rotkvic, M., Lang, J.: POD-Galerkin reduced-order modeling with adaptive finite element snapshots. J. Comput. Phys. 235, 244–258 (2016)

    Article  MathSciNet  Google Scholar 

  33. Vemaganti, K.: Discontinuous Galerkin methods for periodic boundary value problems. Numerical Methods Partial Differ. Equ. 23(3), 587–596 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  34. Volkwein, S.: Optimal control of a phase-field model using proper orthogonal decomposition. ZAMM - J. Appl. Math. Mech. / Zeitschrift für Angewandte Mathematik und Mechanik 81(2), 83–97 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Wirtz, D., Sorensen, D.C., Haasdonk, B.: A posteriori error estimation for DEIM reduced nonlinear dynamical systems. SIAM J. Sci. Comput. 36(2), A311–A338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  36. Yano, Masayuki: A minimum-residual mixed reduced basis method: exact residual certification and simultaneous finite-element reduced-basis refinement. ESAIM: M2AN 50(1), 163–185 (2016)

    Google Scholar 

  37. Zhang, J., Du, Q.: Numerical studies of discrete approximations to the Allen–Cahn equation in the sharp interface limit. SIAM J. Sci. Comput. 31(4), 3042–3063 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the reviewer for the comments and suggestions that helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bülent Karasözen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Uzunca, M., Karasözen, B. (2017). Energy Stable Model Order Reduction for the Allen-Cahn Equation. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds) Model Reduction of Parametrized Systems. MS&A, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58786-8_25

Download citation

Publish with us

Policies and ethics