Skip to main content

Interpolatory Methods for \(\mathcal{H}_{\infty }\) Model Reduction of Multi-Input/Multi-Output Systems

  • Chapter
  • First Online:

Part of the book series: MS&A ((MS&A,volume 17))

Abstract

We develop here a computationally effective approach for producing high-quality \(\mathcal{H}_{\infty }\)-approximations to large scale linear dynamical systems having multiple inputs and multiple outputs (MIMO). We extend an approach for \(\mathcal{H}_{\infty }\) model reduction introduced by Flagg et al. (Syst Control Lett 62(7):567–574, 2013) for the single-input/single-output (SISO) setting, which combined ideas originating in interpolatory \(\mathcal{H}_{2}\)-optimal model reduction with complex Chebyshev approximation. Retaining this framework, our approach to the MIMO problem has its principal computational cost dominated by (sparse) linear solves, and so it can remain an effective strategy in many large-scale settings. We are able to avoid computationally demanding \(\mathcal{H}_{\infty }\) norm calculations that are normally required to monitor progress within each optimization cycle through the use of “data-driven” rational approximations that are built upon previously computed function samples. Numerical examples are included that illustrate our approach. We produce high fidelity reduced models having consistently better \(\mathcal{H}_{\infty }\) performance than models produced via balanced truncation; these models often are as good as (and occasionally better than) models produced using optimal Hankel norm approximation as well. In all cases considered, the method described here produces reduced models at far lower cost than is possible with either balanced truncation or optimal Hankel norm approximation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Available at www.rt.mw.tum.de/?sssMOR.

  2. 2.

    Available at www.sintef.no/projectweb/vectfit/downloads/vfut3/.

References

  1. Antoulas, A.C.: Approximation of Large-Scale Dynamical Systems. Society for Industrial and Applied Mathematics, Philadelphia, PA (2005)

    Book  MATH  Google Scholar 

  2. Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: On the generality of multipoint padé approximations. In: 15th IFAC World Congress on Automatic Control (2002)

    Google Scholar 

  3. Beattie, C.A., Gugercin, S.: Model reduction by rational interpolation. In: Benner, P., Cohen, A., Ohlberger, M., Willcox, K. (eds.) Model Reduction and Approximation: Theory and Algorithms. SIAM, Philadelphia (2017)

    Google Scholar 

  4. Grimme, E.J.: Krylov Projection Methods for Model Reduction. Ph.D. thesis, Department of Electrical Engineering, University of Illinois at Urbana Champaign, 1997

    Google Scholar 

  5. Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: Model reduction of MIMO systems via tangential interpolation. SIAM J. Matrix Anal. Appl. 26(2), 328–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gallivan, K.A., Vandendorpe, A., Van Dooren, P.: Sylvester equations and projection-based model reduction. J. Comput. Appl. Math. 162(1), 213–229 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gugercin, S., Antoulas, A.C., Beattie, C.A.: \(\mathcal{H}_{2}\) model reduction for large-scale linear dynamical systems. SIAM J. Matrix Anal. Appl. 30(2), 609–638 (2008)

    Google Scholar 

  8. Antoulas, A.C., Astolfi, A.: \(\mathcal{H}_{\infty }\)-norm approximation. In: V. Blondel, A. Megretski (eds.) Unsolved Problems in Mathematical Systems and Control Theory, pp. 267–270. Princeton University Press, Princeton (2002)

    Google Scholar 

  9. Helmersson, A.: Model reduction using LMIs. In: Proceedings of 1994 33rd IEEE Conference on Decision and Control, vol. 4, pp. 3217–3222. Lake Buena Vista, IEEE (1994). doi:10.1109/CDC.1994.411635

  10. Varga, A., Parrilo, P.: Fast algorithms for solving \(\mathcal{H}_{\infty }\)-norm minimization problems. In: Proceedings of the 40th IEEE Conference on Decision and Control, 2001, vol. 1, pp. 261–266. IEEE, Piscataway, NJ (2001)

    Google Scholar 

  11. Kavranoglu, D., Bettayeb, M.: Characterization of the solution to the optimal \(\mathcal{H}_{\infty }\) model reduction problem. Syst. Control Lett. 20(2), 99–107 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Glover, K.: All optimal hankel-norm approximations of linear multivariable systems and their linf-error bounds. Int. J. Control 39(6), 1115–1193 (1984)

    Article  MATH  Google Scholar 

  13. L.N. Trefethen, Rational Chebyshev approximation on the unit disk. Numer. Math. 37(2), 297–320 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gugercin, S., Antoulas, A.C.: A survey of model reduction by balanced truncation and some new results. Int. J. Control 77(8), 748–766 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Benner, P., Quintana-Ortí, E.S., Quintana-Ortí, G.: Computing optimal Hankel norm approximations of large-scale systems. In: 43rd IEEE Conference on Decision and Control, 2004. CDC, vol. 3, pp. 3078–3083. IEEE, Piscataway, NJ (2004)

    Google Scholar 

  16. Li, J.-R.: Model reduction of large linear systems via low rank system gramians, Ph.D. thesis, Massachusetts Institute of Technology, 2000

    Google Scholar 

  17. Benner, P., Kürschner, P., Saak, J.: Self-generating and efficient shift parameters in ADI methods for large Lyapunov and Sylvester equations. Electron. Trans. Numer. Anal. 43, 142–162 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Kürschner, P.: Efficient low-rank solution of large-scale matrix equations, Ph.D. thesis, Otto-von-Guericke Universität Magdeburg (2016)

    Google Scholar 

  19. Sabino, J.: Solution of large-scale Lyapunov equations via the block modified Smith method. Ph.D. thesis, Citeseer (2006)

    Google Scholar 

  20. Gugercin, S., Sorensen, D.C., Antoulas, A.C.: A modified low-rank smith method for large-scale Lyapunov equations. Numerical Algoritm. 32(1), 27–55 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Flagg, G.M., Beattie, C.A., Gugercin, S.: Interpolatory \(\mathcal{H}_{\infty }\) model reduction. Syst. Control Lett. 62(7), 567–574 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gustavsen, B., Semlyen, A.: Rational approximation of frequency domain responses by vector fitting. IEEE Trans. Power Delivery 14(3), 1052–1061 (1999)

    Article  Google Scholar 

  23. Drmač, Z., Gugercin, S., Beattie, C.: Vector fitting for matrix-valued rational approximation. SIAM J. Sci. Comput. 37(5), A2346–A2379 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Chahlaoui, Y., Van Dooren, P.: A collection of benchmark examples for model reduction of linear time invariant dynamical systems. Working Note 2002-2, 2002

    Google Scholar 

  25. Mayo, A.J., Antoulas, A.C.: A framework for the solution of the generalized realization problem. Linear Algebra Appl. 425(2–3), 634–662 (2007)

    Google Scholar 

  26. Beattie, C.A., Gugercin, S.: Interpolatory projection methods for structure-preserving model reduction. Syst. Control Lett. 58(3), 225–232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Golub, G.H., Van Loan, C.F.: Matrix Computations, vol. 3. JHU Press, Baltimore (2012)

    MATH  Google Scholar 

  28. Antoulas, A.C., Anderson, B.D.Q.: On the scalar rational interpolation problem. IMA J. Math. Control Inf. 3(2-3), 61–88 (1986)

    Article  MATH  Google Scholar 

  29. Anderson, B.D.O., Antoulas, A.C.: Rational interpolation and state-variable realizations. Linear Algebra Appl. 137, 479–509 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lefteriu, S., Antoulas, A.C.: A new approach to modeling multiport systems from frequency-domain data. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 29(1), 14–27 (2010)

    Article  Google Scholar 

  31. Beattie, C.A., Gugercin, S.: Realization-independent \(\mathcal{H}_{2}\)-approximation. In: 51st IEEE Conference on Decision and Control, pp. 4953–4958. IEEE, Piscataway, NJ (2012)

    Google Scholar 

  32. Gustavsen, B.: Improving the pole relocating properties of vector fitting. IEEE Trans. Power Delivery 21(3), 1587–1592 (2006)

    Article  Google Scholar 

  33. Deschrijver, D., Mrozowski, M., Dhaene, T., De Zutter, D.: Macromodeling of multiport systems using a fast implementation of the vector fitting method. IEEE Microwave Wireless Compon. Lett. 18(6), 383–385 (2008)

    Article  Google Scholar 

  34. Drmac, Z., Gugercin, S., Beattie, C.: Quadrature-based vector fitting for discretized h_2 approximation. SIAM J. Sci. Comput. 37(2), A625–A652 (2015)

    Article  MATH  Google Scholar 

  35. Mitchell, T., Overton, M.L.: Fixed low-order controller design and \(\mathcal{H}_{\infty }\) optimization for large-scale dynamical systems. IFAC-PapersOnLine 48(14), 25–30 (2015)

    Article  Google Scholar 

  36. Mitchell, T., Overton, M.L.: Hybrid expansion–contraction: a robust scaleable method for approximating the \(\mathcal{H}_{\infty }\) norm. IMA J. Numer. Anal. 36(3), 985–1014 (2016)

    Article  MathSciNet  Google Scholar 

  37. Aliyev, N., Benner, P., Mengi, E., Voigt, M.: Large-scale computation of \(\mathcal{H}_{\infty }\) norms by a greedy subspace method. SIAM J. Matrix Anal. Appl. (2016, submitted to). http://portal.ku.edu.tr/~emengi/papers/large_hinfinity.pdf

  38. Wright, S.J.: Coordinate descent algorithms. Math. Program. 151(1), 3–34 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  39. Nocedal, J., Wright, S.: Numerical Optimization. Springer Science and Business Media, New York (2006)

    MATH  Google Scholar 

  40. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Martí, R.: Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J. Comput. 19(3), 328–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Castagnotto, A., Varona, M.C., Jeschek, L., Lohmann, B.: sss and sssMOR: Analysis and reduction of large-scale dynamic systems with MATLAB. at-Automatisierungstechnik 65(2), 134–150(2017). doi:10.1515/auto-2016-0137

  42. Antoulas, A.C., Sorensen, D.C., Gugercin, S.: A survey of model reduction methods for large-scale systems. In: Structured Matrices in Opera Structured, Numerical Analysis, Control, Signal and Image Processing. Contemporary Mathematics, vol. 280, pp. 193–219. AMS Publications, Providence, RI (2001)

    Google Scholar 

Download references

Acknowledgements

The work of the first author was supported by the German Research Foundation (DFG), Grant LO408/19-1, as well as the TUM Fakultäts-Graduiertenzentrum Maschinenwesen; the work of the second author was supported by the Einstein Foundation, Berlin; the work of the third author was supported by the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Castagnotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Castagnotto, A., Beattie, C., Gugercin, S. (2017). Interpolatory Methods for \(\mathcal{H}_{\infty }\) Model Reduction of Multi-Input/Multi-Output Systems. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds) Model Reduction of Parametrized Systems. MS&A, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58786-8_22

Download citation

Publish with us

Policies and ethics