Skip to main content

A HJB-POD Approach to the Control of the Level Set Equation

  • Chapter
  • First Online:
  • 2114 Accesses

Part of the book series: MS&A ((MS&A,volume 17))

Abstract

We consider an optimal control problem where the dynamics is given by the propagation of a one-dimensional graph controlled by its normal speed. A target corresponding to the final configuration of the front is given and we want to minimize the cost to reach the target. We want to solve this optimal control problem via the dynamic programming approach but it is well known that these methods suffer from the “curse of dimensionality” so that we can not apply the method to the semi-discrete version of the dynamical system. However, this is made possible by a reduced-order model for the level set equation which is based on Proper Orthogonal Decomposition. This results in a new low-dimensional dynamical system which is sufficient to track the dynamics. By the numerical solution of the Hamilton-Jacobi-Bellman equation related to the POD approximation we can compute the feedback law and the corresponding optimal trajectory for the nonlinear front propagation problem. We discuss some numerical issues of this approach and present a couple of numerical examples.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alla, A., Falcone, M.: An adaptive POD approximation method for the control of advection-diffusion equations. In: Kunisch, K., Bredies, K., Clason, C., von Winckel, G. (eds.) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol. 164, pp. 1–17. Birkhäuser, Basel (2013)

    Google Scholar 

  2. Alla, A., Falcone, M., Kalise, D.: An efficient policy iteration algorithm for dynamic programming equations. SIAM J. Sci. Comput. 37, 181–200 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alla, A., Falcone, M., Volkwein, S.: Error Analysis for POD approximations of infinite horizon problems via the dynamic programming principle. SIAM J. Control. Optim. (submitted, 2015)

    Google Scholar 

  4. Alla, A., Schmidt, A., Haasdonk, B.: Model order reduction approaches for infinite horizon optimal control problems via the HJB equation. In: Benner, P., et al. (eds.) Model Reduction of Parametrized Systems. MS&A, vol. 17. Springer International Publishing, Cham (2017). doi:10.1007/978-3-319-58786-8_21

    Google Scholar 

  5. Bardi, M., Capuzzo Dolcetta, I.: Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations. Birkhauser, Basel (1997)

    Book  MATH  Google Scholar 

  6. Barles, G.: Solutions de Visocité des Equations de Hamilton-Jacobi. Springer, Berlin (1994)

    MATH  Google Scholar 

  7. Deckelnick, K., Elliott, C.M.: Propagation of graphs in two-dimensional inhomogeneous media. Appl. Numer. Math. 56, 3, 1163–1178 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Deckelnick, K., Elliott, C.M., Styles, V.: Optimal control of the propagation of a graph in inhomogeneous media. SIAM J. Control. Optim. 48, 1335–1352 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Falcone, M., Ferretti, R.: Semi-Lagrangian Approximation Schemes for Linear and Hamilton-Jacobi Equations. SIAM, Philadelphia (2014)

    MATH  Google Scholar 

  10. Grepl, M., Veroy, K.: A level set reduced basis approach to parameter estimation. C. R. Math. 349, 1229–1232 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hinze, M., Pinnau, R., Ulbrich, M., Ulbrich, S.: Optimization with PDE Constraints. Mathematical Modelling: Theory and Applications, vol. 23. Springer, Berlin, (2009)

    Google Scholar 

  12. Kröner, A., Kunisch, K., Zidani, H.: Optimal feedback control of undamped wave equations by solving a HJB equation. ESAIM: Control Optim. Calc. Var. 21, 442–464 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kunisch, K., Xie, L.: POD-based feedback control of Burgers equation by solving the evolutionary HJB equation. Comput. Math. Appl. 49, 1113–1126 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kunisch, K., Volkwein, S., Xie. L.: HJB-POD based feedback design for the optimal control of evolution problems. SIAM J. Appl. Dyn. Syst. 4, 701–722 (2004)

    Google Scholar 

  15. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. In: Abstract Parabolic Systems. Encyclopedia of Mathematics and Its Applications 74, vol. I. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  16. Lasiecka, I., Triggiani, R.: Control Theory for Partial Differential Equations: Continuous and Approximation Theories. In: Abstract Hyperbolic-Like Systems Over a Finite Time Horizon. Encyclopedia of Mathematics and Its Applications 74, vol. II. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  17. Lions, J.L.: Optimal Control of Systems Governed by Partial Differential Equations, Band 170. Springer, New York/Berlin (1971)

    Book  Google Scholar 

  18. Osher, S., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    Book  MATH  Google Scholar 

  19. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  20. Sirovich, L.: Turbulence and the dynamics of coherent structures. Parts I-II. Q. Appl. Math. XVL, 561–590 (1987)

    Google Scholar 

  21. Tröltzsch, F.: Optimal Control of Partial Differential Equations: Theory, Methods and Application. American Mathematical Society, Providence (2010)

    Book  MATH  Google Scholar 

  22. Volkwein, S.: Model reduction using proper orthogonal decomposition. Lecture Notes, University of Konstanz (2013). http://www.math.uni-konstanz.de/numerik/personen/volkwein/teaching/scripts.php

    Google Scholar 

Download references

Acknowledgements

The first author is supported by US Department of Energy grant number DE-SC0009324.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Alla .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alla, A., Fabrini, G., Falcone, M. (2017). A HJB-POD Approach to the Control of the Level Set Equation. In: Benner, P., Ohlberger, M., Patera, A., Rozza, G., Urban, K. (eds) Model Reduction of Parametrized Systems. MS&A, vol 17. Springer, Cham. https://doi.org/10.1007/978-3-319-58786-8_20

Download citation

Publish with us

Policies and ethics