Analytic Existence and Uniqueness Results for PDE-Based Image Reconstruction with the Laplacian

  • Laurent HoeltgenEmail author
  • Isaac Harris
  • Michael Breuß
  • Andreas Kleefeld
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)


Partial differential equations are well suited for dealing with image reconstruction tasks such as inpainting. One of the most successful mathematical frameworks for image reconstruction relies on variations of the Laplace equation with different boundary conditions. In this work we analyse these formulations and discuss the existence and uniqueness of solutions of corresponding boundary value problems, as well as their regularity from an analytic point of view. Our work not only sheds light on useful aspects of the well posedness of several standard problem formulations in image reconstruction but also aggregates them in a common framework. In addition, the performed analysis guides us to specify two new formulations of the classic image reconstruction problem that may give rise to new developments in image reconstruction.


Partial differential equations Laplace equation Mixed boundary conditions Image reconstruction Image inpainting 


  1. 1.
    Azzam, A., Kreyszig, E.: On solutions of elliptic equations satisfying mixed boundary conditions. SIAM J. Math. Anal. 13(2), 254–262 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Belhachmi, Z., Bucur, D., Burgeth, B., Weickert, J.: How to choose interpolation data in images. SIAM J. Appl. Math. 70(1), 333–352 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertalmio, M., Bertozzi, A., Sapiro, G.: Navier-stokes, fluid dynamics, and image and video inpainting. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 355–362. IEEE (2001)Google Scholar
  4. 4.
    Bertalmío, M., Caselles, V., Haro, G., Sapiro, G.: PDE-based image and surface inpainting. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 33–61. Springer, Heidelberg (2006). doi: 10.1007/0-387-28831-7_3 CrossRefGoogle Scholar
  5. 5.
    Bertalmío, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley Publishing Company (2000)Google Scholar
  6. 6.
    Bertozzi, A., Esedoglu, S., Gillette, A.: Inpainting of binary images using the Cahn-Hilliard equation. IEEE Trans. Image Proc. 16(1), 285–291 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cantrell, R.S., Cosner, C.: Spatial Ecology via Reaction-Diffusion Equations. Wiley Series in Mathematical and Computational Biology. Wiley, Hoboken (2003)zbMATHGoogle Scholar
  8. 8.
    Chen, Y., Ranftl, R., Pock, T.: A bi-level view of inpainting-based image compression. ArXiv Report arXiv:1401.4112 (2014)
  9. 9.
    Dret, H.L., Lucquin, B.: Partial Differential Equations: Modeling, Analysis and Numerical Approximation. Birkhäuser, Basel (2016)CrossRefzbMATHGoogle Scholar
  10. 10.
    Ern, A., Guermond, J.L.: Theory and Practice of Finite Elements. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Galić, I., Weickert, J., Welk, M., Bruhn, A., Belyaev, A., Seidel, H.-P.: Towards PDE-based image compression. In: Paragios, N., Faugeras, O., Chan, T., Schnörr, C. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 37–48. Springer, Heidelberg (2005). doi: 10.1007/11567646_4 CrossRefGoogle Scholar
  12. 12.
    Hoeltgen, L., Setzer, S., Weickert, J.: An optimal control approach to find sparse data for laplace interpolation. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 151–164. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40395-8_12 CrossRefGoogle Scholar
  13. 13.
    Hoeltgen, L.: Optimal interpolation data for image reconstructions. Ph.D. thesis, Saarland University (2014)Google Scholar
  14. 14.
    Hoeltgen, L., Weickert, J.: Why does non-binary mask optimisation work for diffusion-based image compression? In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 85–98. Springer, Cham (2015). doi: 10.1007/978-3-319-14612-6_7 Google Scholar
  15. 15.
    Li, Y., Jeong, D., Choi, J., Lee, S., Kim, J.: Fast local image inpainting based on the Allen-Cahn model. Digit. Sig. Process. 37, 65–74 (2015)CrossRefGoogle Scholar
  16. 16.
    Mainberger, M., Bruhn, A., Weickert, J., Forchhammer, S.: Edge-based compression of cartoon-like images with homogeneous diffusion. Pattern Recogn. 44(9), 1859–1873 (2011)CrossRefGoogle Scholar
  17. 17.
    Mainberger, M., Hoffmann, S., Weickert, J., Tang, C.H., Johannsen, D., Neumann, F., Doerr, B.: Optimising spatial and tonal data for homogeneous diffusion inpainting. In: Bruckstein, A.M., Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 26–37. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-24785-9_3 CrossRefGoogle Scholar
  18. 18.
    Peter, P., Hoffmann, S., Nedwed, F., Hoeltgen, L., Weickert, J.: Evaluating the true potential of diffusion-based inpainting in a compression context. Sig. Process.: Image Commun. 46, 40–53 (2016)Google Scholar
  19. 19.
    Schmaltz, C., Weickert, J., Bruhn, A.: Beating the quality of JPEG 2000 with anisotropic diffusion. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 452–461. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03798-6_46 CrossRefGoogle Scholar
  20. 20.
    Schönlieb, C.B.: Partial Differential Equation Methods for Image Inpainting, Cambridge Monographs on Applied and Computational Mathematics, vol. 29. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
  21. 21.
    Tang, C.: Mixed boundary value problems for quasilinear elliptic equations. Ph.D. thesis, Iowa State University (2013)Google Scholar
  22. 22.
    Zaremba, S.: Sur un probléme mixte relatif à l’équation de Laplace. Bulletin International de l’Académie des Sciences de Cracovie, pp. 313–344 (1910)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Laurent Hoeltgen
    • 1
    Email author
  • Isaac Harris
    • 2
  • Michael Breuß
    • 1
  • Andreas Kleefeld
    • 3
  1. 1.Institute for MathematicsBrandenburg Technical UniversityCottbusGermany
  2. 2.Department of MathematicsTexas A&M UniversityCollege StationUSA
  3. 3.Institute for Advanced SimulationForschungszentrum Jülich GmbH, Jülich Supercomputing CentreJülichGermany

Personalised recommendations