Tubular Structure Segmentation Based on Heat Diffusion

  • Fang YangEmail author
  • Laurent D. Cohen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)


This paper proposes an interactive method for tubular structure segmentation. The method is based on the minimal paths obtained from the geodesic distance solved by the heat equation. This distance can be based both on isotropic or anisotropic metric by solving the corresponding heat equation. Thanks to the additional dimension added for the local radius around the centerline, our method can not only detect the centerline of the structure, but also extracts the boundaries of the structures. Our algorithm is tested on both synthetic and real images. The promising results demonstrate the robustness and effectiveness of the algorithm.


Heat Equation Geodesic Distance Anisotropic Diffusion Heat Diffusion Minimal Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Jean-Marie Mirebeau for his fruitful discussions and suggestions on the numerical solutions of isotropic and anisotropic heat equations in 3D space.


  1. 1.
    Benmansour, F., Cohen, L.D., Law, M., Chung, A.: Tubular anisotropy for 2D vessel segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR (2009)Google Scholar
  2. 2.
    Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92, 192–210 (2011)CrossRefGoogle Scholar
  3. 3.
    Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78 (1997)CrossRefGoogle Scholar
  4. 4.
    Crane, K., Weischedel, C., Wardetzky, M.: Geodesics in heat a new approach to computing distance based on heat flow. ACM Trans. Graph. (TOG) 32, 152 (2013)Google Scholar
  5. 5.
    Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269–271 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 82, 421–439 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fehrenbach, J., Mirebeau, J.-M.: Sparse non-negative stencils for anisotropic diffusion. J. Math. Imaging Vis. 49, 123–147 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). doi: 10.1007/BFb0056195 CrossRefGoogle Scholar
  9. 9.
    Law, M.W.K., Chung, A.C.S.: Three dimensional curvilinear structure detection using optimally oriented flux. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5305, pp. 368–382. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88693-8_27 CrossRefGoogle Scholar
  10. 10.
    Li, H., Yezzi, A.: Vessels as 4-D curves: global minimal 4-D paths to extract 3-D tubular surfaces and centerlines. IEEE Trans. Med. Imaging 26, 1213–1223 (2007)CrossRefGoogle Scholar
  11. 11.
    Lindeberg, T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30, 117–156 (1998)CrossRefGoogle Scholar
  12. 12.
    Jean-Marie, M., Jérôme F., Laurent, R., Shaza, T.: Anisotropic diffusion in ITK. Insight J. (2015)Google Scholar
  13. 13.
    Peaceman, D.W., Rachford Jr., H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3, 28–41 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Peyré, G., Péchaud, M., Keriven, R., Cohen, L.D.: Geodesic methods in computer vision and graphics. Found. Trends® Comput. Graph. Vis. 5, 197–397 (2010)CrossRefzbMATHGoogle Scholar
  15. 15.
    Schmitz, P.G., Ying, L.: A fast direct solver for elliptic problems on general meshes in 2D. J. Comput. Phys. 231, 1314–1338 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Schmitz, P.G., Ying, L.: A fast nested dissection solver for Cartesian 3D elliptic problems using hierarchical matrices. J. Comput. Phys. 258, 227–245 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Nat. Acad. Sci. 93, 1591–1595 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Spielman, D.A., Teng, S.-H.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing (2004)Google Scholar
  19. 19.
    Varadhan, S.R.S.: On the behavior of the fundamental solution of the heat equation with variable coefficients. Commun. Pure Appl. Math. 20, 431–455 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)zbMATHGoogle Scholar
  21. 21.
    Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. J. Vis. Commun. Image Represent. 13, 103–118 (2002)CrossRefGoogle Scholar
  22. 22.
    Yang, F., Cohen, L.D.: Geodesic distance and curves through isotropic and anisotropic heat equations on images and surfaces. J. Math. Imaging Vis. 55(2), 210–228 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhao, H.: A fast sweeping method for Eikonal equations. Math. Comput. 74, 603–627 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
  25. 25.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.CEREMADE, CNRS, UMR 7534, Université Paris Dauphine, PSL Research UniversityParisFrance

Personalised recommendations