Skip to main content

Evaluating Data Terms for Variational Multi-frame Super-Resolution

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

We present the first systematic evaluation of the data terms for multi-frame super-resolution within a variational model. The various data terms are derived by permuting the order of the blur-, downsample-, and warp-operators in the image acquisition model. This yields six different basic models. Our experiments using synthetic images with known ground truth show that two models are preferable: the widely-used warp-blur-downsample model that is physically plausible if atmospheric blur is negligible, and the hardly considered blur-warp-downsample model. We show that the quality of motion estimation plays the decisive role on which of these two models works best: While the classic warp-blur-downsample model requires optimal motion estimation, the rarely-used blur-warp-downsample model should be preferred in practically relevant scenarios when motion estimation is suboptimal. This confirms a widely ignored result by Wang and Qi (2004). Last but not least, we propose a new modification of the blur-warp-downsample model that offers a very significant speed-up without substantial loss in the reconstruction quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Babacan, S., Molina, R., Katsaggelos, A.: Variational Bayesian super resolution. IEEE Trans. Image Process. 20(4), 984–999 (2011)

    Article  MathSciNet  Google Scholar 

  2. Belekos, S., Galatsanos, N., Katsaggelos, A.: Maximum a posteriori video super-resolution using a new multichannel image prior. IEEE Trans. Image Process. 19(6), 1451–1464 (2010)

    Article  MathSciNet  Google Scholar 

  3. Black, M., Anandan, P.: A framework for robust estimation of optical flow. In: Proceedings of the Fourth International Conference on Computer Vision, pp. 231–236. IEEE Computer Society Press, Berlin, Germany, May 1993

    Google Scholar 

  4. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  5. Chaudhuri, S.: Super-Resolution Imaging. Springer, New York (2001)

    Google Scholar 

  6. Elad, M., Feuer, A.: Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997)

    Article  Google Scholar 

  7. Elad, M., Hel-Or, Y.: A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process. 10(8), 1187–1193 (2001)

    Article  MATH  Google Scholar 

  8. Farsiu, S., Robinson, M.D., Elad, M., Milanfar, P.: Fast and robust multi-frame super resolution. IEEE Trans. Image Process. 13(10), 1327–1364 (2004)

    Article  Google Scholar 

  9. Glasner, D., Shai, B., Irani, M.: Super-resolution from a single image. In: Proceedings of the Twelfth International Conference on Computer Vision, pp. 349–356. IEEE, Kyoto, Japan, September 2009

    Google Scholar 

  10. He, H., Kondi, L.: An image super-resolution algorithm for different error levels per frame. IEEE Trans. Image Process. 15(3), 592–603 (2006)

    Article  Google Scholar 

  11. Li, X., Hu, Y., Gao, X., Tao, D., Ning, B.: A multi-frame image super-resolution method. Sig. Process. 90(2), 405–414 (2010)

    Article  MATH  Google Scholar 

  12. Marquina, A., Stanley, J.: Image super-resolution by TV-regularization and Bregman iteration. Springer J. Sci. Comput. 37(3), 367–382 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Milanfar, P.: Super-Resolution Imaging. CRC Press, Boca Raton (2010)

    Google Scholar 

  14. Mitzel, D., Pock, T., Schoenemann, T., Cremers, D.: Video super resolution using duality based TV-L1 optical flow. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 432–441. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03798-6_44

    Chapter  Google Scholar 

  15. Ng, M., Shen, H., Lam, E., Zhang, L.: A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP J. Adv. Sig. Process. 1, 1–6 (2007)

    Article  MATH  Google Scholar 

  16. Nguyen, N., Milanfar, P., Golub, G.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans. Process. 10(9), 1299–1308 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. Park, S., Park, M., Kang, M.: Super-resolution image reconstruction: a technical overview. IEEE Sig. Process. Mag. 20(3), 21–36 (2003)

    Article  Google Scholar 

  18. Rochefort, G., Champagnat, F., Besnerais, G.L., Giovannelli, J.: An improved observation model for super-resolution under affine motion. IEEE Trans. Image Process. 15(11), 3325–3337 (2006)

    Article  Google Scholar 

  19. Tian, J., Ma, K.: A survey on super-resolution imaging. Sig. Image Video Process. 5(3), 329–342 (2011)

    Article  Google Scholar 

  20. Tsai, R., Huang, T.: Multiframe image restoration and registration. Adv. Comput. Vis. Image Process. 1(2), 317–339 (1984)

    Google Scholar 

  21. Wang, Z., Qi, F.: On ambiguities in super-resolution modeling. IEEE Sig. Process. Lett. 11(8), 678–681 (2004)

    Article  Google Scholar 

  22. Weickert, J., Grewenig, S., Schroers, C., Bruhn, A.: Cyclic schemes for PDE-based image analysis. Int. J. Comput. Vis. 118(3), 275–299 (2016)

    Article  MathSciNet  Google Scholar 

  23. Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2681–2873 (2010)

    MathSciNet  Google Scholar 

  24. Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Sig. Process. 90(3), 848–859 (2010)

    Article  MATH  Google Scholar 

  25. Zhang, X., Jiang, J., Peng, S.: Commutability of blur and affine warping in super-resolution with application to joint estimation of triple-coupled variables. IEEE Trans. Image Process. 21(4), 1796–1808 (2012)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kireeti Bodduna .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bodduna, K., Weickert, J. (2017). Evaluating Data Terms for Variational Multi-frame Super-Resolution. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics