Advertisement

Bregman-Proximal Augmented Lagrangian Approach to Multiphase Image Segmentation

  • Jing YuanEmail author
  • Ke Yin
  • Yi-Guang Bai
  • Xiang-Chu Feng
  • Xue-Cheng Tai
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

This work studies the optimization problem of assigning multiple labels with the minimum perimeter, namely Potts model, in the spatially continuous setting. It was extensively studied within recent years and used to many different applications of image processing and computer vision, especially image segmentation. The existing convex relaxation approaches use total-variation functionals directly encoding perimeter costs, which result in pixelwise simplex constrained optimization problems and can be efficiently solved under a primal-dual perspective in numerics. Among most efficient approaches, such challenging simplex constraints are tackled either by extra projection steps to the simplex set at each pixel, which requires intensive simplex-projection computations, or by introducing extra dual variables resulting in the dual optimization-based continuous max-flow formulation to the studied convex relaxed Potts model. However, dealing with such extra dual flow variables needs additional loads in both computation and memory; particularly for the cases with many labels. To this end, we propose a novel optimization approach upon the Bregman-Proximal Augmented Lagrangian Method (BPALM), for which the Bregman distance function, instead of the classical quadratic Euclidean distance function, is integrated in the algorithmic framework of Augmented Lagrangian Methods. The new optimization method has significant numerical advantages; it naturally avoids extra computational and memory burden in enforcing the simplex constraints and allows parallel computations over different labels. Numerical experiments show competitive performance in terms of quality and significantly reduced memory load compared to the state-of-the-art convex optimization methods for the convex relaxed Potts model.

Keywords

Memory Load Label Function Augmented Lagrangian Method Augmented Lagrangian Function Linear Equality Constraint 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bae, E., Yuan, J., Tai, X.C.: Global minimization for continuous multiphase partitioning problems using a dual approach. Technical report CAM09-75, UCLA, CAM, September 2009Google Scholar
  2. 2.
    Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bertsekas, D.P.: Nonlinear Programming. Athena Scientific, Belmont (1999)zbMATHGoogle Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: ICCV 2003, pp. 26–33 (2003)Google Scholar
  5. 5.
    Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23, 1222–1239 (2001)CrossRefGoogle Scholar
  6. 6.
    Bregman, L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Math. Phys. 7, 200–217 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Censor, Y.A., Zenios, S.A.: Parallel Optimization: Theory, Algorithms and Applications. Oxford University Press, Oxford (1997)zbMATHGoogle Scholar
  8. 8.
    Chambolle, A., Cremers, D., Pock, T.: A convex approach for computing minimal partitions. Technical report TR-2008-05, Department of Computer Science, University of Bonn, Bonn, Germany, November 2008Google Scholar
  9. 9.
    Iusem, A.N., Svaiter, B.F., Teboulle, M.: Entropy-like proximal methods in convex programming. Math. Oper. Res. 19(4), 790–814 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kohli, P., Kumar, M.P., Torr, P.H.S.: \(p^3\) and beyond: move making algorithms for solving higher order functions. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1645–1656 (2009)CrossRefGoogle Scholar
  11. 11.
    Kolmogorov, V.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: ICCV, pp. 564–571 (2005)Google Scholar
  12. 12.
    Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 82–96. Springer, Heidelberg (2002). doi: 10.1007/3-540-47977-5_6 CrossRefGoogle Scholar
  13. 13.
    Komodakis, N., Tziritas, G.: Approximate labeling via graph-cuts based on linear programming. Pattern Anal. Mach. Intell. 29, 1436–1453 (2007)CrossRefGoogle Scholar
  14. 14.
    Lellmann, J., Becker, F., Schnörr, C.: Convex optimization for multi-class image labeling with a novel family of total variation based regularizers. In: ICCV, pp. 646–653 (2009)Google Scholar
  15. 15.
    Lellmann, J., Kappes, J., Yuan, J., Becker, F., Schnörr, C.: Convex multi-class image labeling by simplex-constrained total variation. Technical report, HCI, IWR, University Heidelberg, IWR, University Heidelberg, November 2008Google Scholar
  16. 16.
    Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer-Verlag New York, Inc., Secaucus (2001)CrossRefzbMATHGoogle Scholar
  17. 17.
    Nikolova, M., Esedoglu, S., Chan, T.F.: Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J. App. Math. 66(5), 1632–1648 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Paragios, N., Chen, Y., Faugeras, O.: Handbook of Mathematical Models in Computer Vision. Springer-Verlag New York, Inc., Secaucus (2005)zbMATHGoogle Scholar
  19. 19.
    Pock, T., Chambolle, A., Bischof, H., Cremers, D.: A convex relaxation approachfor computing minimal partitions. In: CVPR, Miami, Florida (2009)Google Scholar
  20. 20.
    Pock, T., Schoenemann, T., Graber, G., Bischof, H., Cremers, D.: A convex formulation of continuous multi-label problems. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 792–805. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-88690-7_59 CrossRefGoogle Scholar
  21. 21.
    Rockafellar, R.T.: Convex Analysis. Princeton Mathematical Series, vol. 28. Princeton University Press, Princeton (1970)CrossRefzbMATHGoogle Scholar
  22. 22.
    Teboulle, M.: Entropic proximal mappings with applications to nonlinear programming. Math. Oper. Res. 17(3), 670–690 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wainwright, M., Jaakkola, T., Willsky, A.: Map estimation via agreement on (hyper)trees: message-passing and linear programming approaches. IEEE Trans. Inf. Theory 51, 3697–3717 (2002)CrossRefzbMATHGoogle Scholar
  24. 24.
    Yuan, J., Bae, E., Tai, X.C.: A study on continuous max-flow and min-cut approaches. In: CVPR, San Francisco, USA (2010)Google Scholar
  25. 25.
    Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A continuous max-flow approach to potts model. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 379–392. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15567-3_28 CrossRefGoogle Scholar
  26. 26.
    Yuan, J., Bae, E., Tai, X.-C., Boykov, Y.: A spatially continuous max-flow and min-cut framework for binary labeling problems. Numerische Mathematik 126(3), 559–587 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zach, C., Gallup, D., Frahm, J.-M., Niethammer, M.: Fast global labeling for real-time stereo using multiple plane sweeps. In: Vision, Modeling and Visualization Workshop (VMV) (2008)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Jing Yuan
    • 1
    Email author
  • Ke Yin
    • 2
  • Yi-Guang Bai
    • 1
  • Xiang-Chu Feng
    • 1
  • Xue-Cheng Tai
    • 3
  1. 1.School of Mathematics and StatisticsXidian UniversityXi’anChina
  2. 2.Center for Mathematical SciencesHuazhong University of Science and TechnologyWuhanChina
  3. 3.Mathematics DepartmentUniversity of BergenBergenNorway

Personalised recommendations