Skip to main content

Nonlinear Spectral Image Fusion

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

In this paper we demonstrate that the framework of nonlinear spectral decompositions based on total variation (TV) regularization is very well suited for image fusion as well as more general image manipulation tasks. The well-localized and edge-preserving spectral TV decomposition allows to select frequencies of a certain image to transfer particular features, such as wrinkles in a face, from one image to another. We illustrate the effectiveness of the proposed approach in several numerical experiments, including a comparison to the competing techniques of Poisson image editing, linear osmosis, wavelet fusion and Laplacian pyramid fusion. We conclude that the proposed spectral TV image decomposition framework is a valuable tool for semi- and fully-automatic image editing and fusion.

M. Benning, M. Möller and R.Z. Nossek—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Amolins, K., Zhang, Y., Dare, P.: Wavelet based image fusion techniques an introduction, review and comparison. ISPRS J. Photogramm. Remote Sens. 62, 249–263 (2007)

    Article  Google Scholar 

  2. Asthana, A., Zafeiriou, S., Cheng, S., Pantic, M.: Incremental face alignment in the wild. In: CVPR Proceedings, pp. 1859–1866 (2014)

    Google Scholar 

  3. Benning, M., Burger, M.: Ground states and singular vectors of convex variational regularization methods. Methods Appl. Anal. 20(4), 295–334 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194. ACM Press/Addison-Wesley Publishing Co. (1999)

    Google Scholar 

  5. Burger, M., Eckardt, L., Gilboa, G., Moeller, M.: Spectral representations of one-homogeneous functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 16–27. Springer, Cham (2015). doi:10.1007/978-3-319-18461-6_2

    Google Scholar 

  6. Burger, M., Frick, K., Osher, S.J., Scherzer, O.: Inverse total variation flow. Multiscale Model. Simul. 6(2), 366–395 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Burger, M., Gilboa, G., Moeller, M., Eckardt, L., Cremers, D.: Spectral decompositions using one-homogeneous functionals (2015, submitted). http://arxiv.org/pdf/1601.02912v1.pdf

  8. Burger, M., Gilboa, G., Osher, S., Xu, J.: Nonlinear inverse scale space methods. Comm. Math. Sci. 4(1), 179–212 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. (TOG) 2(4), 217–236 (1983)

    Article  Google Scholar 

  10. Condat, L., Mosaddegh, S.: Joint demosaicking and denoising by total variation minimization. In: 19th IEEE International Conference on Image Processing (ICIP), pp. 2781–2784 (2012)

    Google Scholar 

  11. Farbman, Z., Fattal, R., Lischinski, D., Szeliski, R.: Edge-preserving decompositions for multi-scale tone, detail manipulation. In: ACM SIGGRAPH 2008 Papers, SIGGRAPH 2008, pp. 67:1–67:10. ACM, New York (2008)

    Google Scholar 

  12. Fattal, R., Agrawala, M., Rusinkiewicz, S.: Multiscale shape and detail enhancement from multi-light image collections. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH 2007. ACM, New York (2007)

    Google Scholar 

  13. Gilboa, G.: A spectral approach to total variation. In: Kuijper, A., Bredies, K., Pock, T., Bischof, H. (eds.) SSVM 2013. LNCS, vol. 7893, pp. 36–47. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38267-3_4

    Chapter  Google Scholar 

  14. Gilboa, G.: A total variation spectral framework for scale and texture analysis. SIAM J. Imaging Sci. 7(4), 1937–1961 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilboa, G., Moeller, M., Burger, M.: Nonlinear spectral analysis via one-homogeneous functionals: overview and future prospects. J. Math. Imaging Vis. 56(2), 300–319 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goldstein, T., Esser, E., Baraniuk, R.: Adaptive primal-dual hybrid gradient methods for saddle-point problems. arXiv Preprint (2013)

    Google Scholar 

  17. Hagenburg, K., Breuß, M., Weickert, J., Vogel, O.: Novel schemes for hyperbolic PDEs using osmosis filters from visual computing. In: Bruckstein, A.M., Haar Romeny, B.M., Bronstein, A.M., Bronstein, M.M. (eds.) SSVM 2011. LNCS, vol. 6667, pp. 532–543. Springer, Heidelberg (2012). doi:10.1007/978-3-642-24785-9_45

    Chapter  Google Scholar 

  18. Weickert, J., Hagenburg, K., Breuß, M., Vogel, O.: Linear osmosis models for visual computing. In: Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., Tai, X.-C. (eds.) EMMCVPR 2013. LNCS, vol. 8081, pp. 26–39. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40395-8_3

    Chapter  Google Scholar 

  19. Kass, M., Solomon, J.: Smoothed local histogram filters. In: ACM SIGGRAPH 2010 Papers, SIGGRAPH 2010, pp. 100:1–100:10. ACM. New York (2010)

    Google Scholar 

  20. Li, S., Yang, B.: Multifocus image fusion by combining curvelet and wavelet transform. Pattern Recogn. Lett. 29(9), 1295–1301 (2008)

    Article  Google Scholar 

  21. Nieuwenhuis, C., Cremers, D.: Spatially varying color distributions for interactive multi-label segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1234–1247 (2013)

    Article  Google Scholar 

  22. Osher, S., Burger, M., Goldfarb, D., Xu, J., Yin, W.: An iterative regularization method for total variation based image restoration. SIAM J. Multiscale Model. Simul. 4, 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH 2003 Papers, SIGGRAPH 2003, pp. 313–318. ACM (2003)

    Google Scholar 

  24. Pock, T., Chambolle, A.: Diagonal preconditioning for first order primal-dual algorithms in convex optimization. In: ICCV, pp. 1762–1769 (2011)

    Google Scholar 

  25. Stathaki, T.: Image Fusion: Algorithms and Applications. Academic Press, Cambridge (2008)

    Google Scholar 

  26. Su, Z., Lu, X., Artusi, A.: A novel image decomposition approach and its applications. Vis. Comput. 29, 1011–1023 (2013)

    Article  Google Scholar 

  27. Subr, K., Soler, C., Durand, F.: Edge-preserving multiscale image decomposition based on local extrema. In: ACM SIGGRAPH Asia 2009 Papers, SIGGRAPH Asia 2009, pp. 147:1–147:9. ACM, New York (2009)

    Google Scholar 

  28. Thies, J., Zollhöfer, M., Nießner, M., Valgaerts, L., Stamminger, M., Theobalt, C.: Real-time expression transfer for facial reenactment. ACM Trans. Graph. (TOG), 34(6) (2015)

    Google Scholar 

  29. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  30. Zeeuw, P.M.: Wavelets and Image Fusion. CWI, Amsterdam (1998)

    Google Scholar 

Download references

Acknowledgements

MBe and CBS acknowledge support from EPSRC grant EP/M00483X/1 and the Leverhulme Trust project Breaking the non-convexity barrier. MBe further acknowledges support from the Leverhulme Trust early career fellowship “Learning from mistakes: a supervised feedback-loop for imaging applications” and the Newton Trust. MM acknowledges support from the German Research Foundation (DFG) as part of the research training group GRK 1564 Imaging New Modalities. RN and GG acknowledge support by the Israel Science Foundation (grant 718/15). MBu acknowledges support by ERC via Grant EU FP 7 - ERC Consolidator Grant 615216 LifeInverse. DC acknowledges support from ERC Consolidator Grant 3D Reloaded. CBS further acknowledges support from EPSRC centre EP/N014588/1, the Cantab Capital Institute for the Mathematics of Information, and from CHiPS (Horizon 2020 RISE project grant).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Benning .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 16947 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Benning, M. et al. (2017). Nonlinear Spectral Image Fusion. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics