Advertisement

On a Projected Weiszfeld Algorithm

  • Sebastian Neumayer
  • Max NimmerEmail author
  • Gabriele Steidl
  • Henrike Stephani
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

Weiszfeld’s method provides an efficient way for computing the weighted median of anchor points \(p_j \in {\mathbb {R}}^n\), \(j=1,\ldots ,M\), i.e., the minimizer of \(\sum _{j=1}^M w_j \Vert x-p_j\Vert _2\). In certain applications as in unmixing problems it may be required that x lies in addition in a specific set. In other words we have to deal with a constrained median problem. In this paper we are concerned with closed convex sets lying in a hyperplane of \({\mathbb {R}}^n\) as e.g., the linearly transformed probability simplex. We propose a projected version of the Weiszfeld algorithm to find the minimizer of the constrained median problem and prove the convergence of the algorithm. Here the main contribution is the appropriate handling of iterates taking values in the set of anchor points. A first artificial example shows that the model produces promising results in the presence of different kinds of noise.

Keywords

Median Projected Weiszfeld algorithm Spectral demixing 

References

  1. 1.
    Andersen, K.D., Christiansen, E., Conn, A.R., Overton, M.L.: An efficient primal-dual interior-point method for minimizing a sum of Euclidean norms. SIAM J. Sci. Comput. 22(1), 243–262 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Astola, J., Haavisto, P., Neuvo, Y.: Vector median filters. Proc. IEEE 78(4), 678–689 (1990)CrossRefGoogle Scholar
  3. 3.
    Beck, A., Sabach, S.: Weiszfelds method: old and new results. J. Optim. Theory Appl. 164(1), 1–40 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bertsekas, D.P., Nedić, A., Ozdaglar, A.E.: Convex Analysis and Optimization. Athena Scientific, Belmont (2003)zbMATHGoogle Scholar
  5. 5.
    Brimberg, J.: The Fermat-Weber location problem revisited. Math. Program. 71, 71–76 (1995)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Calamai, P.H., Conn, A.R.: A projected Newton method for \(l_p\) norm location problems. Math. Program. 38(1), 75–109 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Prob. 24(6), 065014 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Karakos, D., Trahanias, P.E.: Generalized multichannel image-filtering structures. IEEE Trans. Image Process. 6(7), 1038–1044 (1997)CrossRefGoogle Scholar
  9. 9.
    Katz, I.N.: Local convergence in Fermat’s problem. Math. Program. 6(1), 89–104 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Keeling, S.L., Kunisch, K.: Robust \(\ell _1\) approaches to computing the geometric median and principal and independent components. J. Math. Imaging Vis. 56(1), 99–124 (2016)CrossRefzbMATHGoogle Scholar
  11. 11.
    Kuhn, H.W.: A note on Fermat’s problem. Math. Program. 4, 98–107 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kuhn, H.W., Kuenne, R.E.: An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. J. Reg. Sci. 4(2), 21–33 (1962)CrossRefGoogle Scholar
  13. 13.
    Nesterov, Y., Nemirovskii, A.: Interior-Point Polynomial Algorithms in Convex Programming, vol. 13. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1994)CrossRefzbMATHGoogle Scholar
  14. 14.
    Ostresh, L.M.: On the convergence of a class of iterative methods for solving the Weber location problem. Oper. Res. 26(4), 597–609 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Overton, M.L.: A quadratically convergent method for minimizing a sum of Euclidean norms. Math. Program. 27(1), 34–63 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Setzer, S., Steidl, G., Teuber, T.: On vector and matrix median computation. J. Comput. Appl. Math. 236(8), 2200–2222 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Torres, G.A.: A Weiszfeld-like algorithm for a Weber location problem constrained to a closed and convex set. arXiv preprint arXiv:1204.1087 (2012)
  18. 18.
    Trahanias, P.E., Venetsanopoulos, A.N.: Vector directional filters - a new class of multichannel image processing filters. IEEE Trans. Image Process. 2(4), 528–534 (1993)CrossRefGoogle Scholar
  19. 19.
    Vardi, Y., Zhang, C.H.: A modified Weiszfeld algorithm for the Fermat-Weber location. Math. Program. 90, 559–566 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Weiszfeld, E.: Sur le point pour lequel les sommes des distances de \(n\) points donnés et minimum. Tôhoku Math. J. 43, 355–386 (1937)zbMATHGoogle Scholar
  21. 21.
    Welk, M., Weickert, J., Becker, F., Schnörr, C., Feddern, C., Burgeth, B.: Median and related local filters for tensor-valued images. Sig. Process. 87(2), 291–308 (2007)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Sebastian Neumayer
    • 1
  • Max Nimmer
    • 1
    • 2
    Email author
  • Gabriele Steidl
    • 1
    • 3
  • Henrike Stephani
    • 3
  1. 1.Department of MathematicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Leibniz Institute of Photonic Technology (IPHT)JenaGermany
  3. 3.Fraunhofer Institute for Industrial Mathematics (ITWM)KaiserslauternGermany

Personalised recommendations