Skip to main content

Infimal Convolution Coupling of First and Second Order Differences on Manifold-Valued Images

  • Conference paper
  • First Online:
Book cover Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

Recently infimal convolution type functions were used in regularization terms of variational models for restoring and decomposing images. This is the first attempt to generalize the infimal convolution of first and second order differences to manifold-valued images. We propose both an extrinsic and an intrinsic approach. Our focus is on the second one since the summands arising in the infimal convolution lie on the manifold themselves and not in the higher dimensional embedding space. We demonstrate by numerical examples that the approach works well on the circle, the 2-sphere, the rotation group, and the manifold of positive definite matrices with the affine invariant metric.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil, P.-A., Mahony, R., Sepulchre, R.: Optimization Algorithms on Matrix Manifolds. Princeton University Press, Princeton (2009)

    MATH  Google Scholar 

  2. Adams, B.L., Wright, S.I., Kunze, K.: Orientation imaging: the emergence of a new microscopy. J. Metall. Mater. Trans. A 24, 819–831 (1993)

    Article  Google Scholar 

  3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Lojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aujol, J.-F., Gilboa, G., Chan, T., Osher, S.: Structure-texture image decomposition – modelling, algorithms and parameter selection. Int. J. Comput. Vision 67(1), 111–136 (2006)

    Article  MATH  Google Scholar 

  5. Azagra, R.D., Ferrera, C.J.: Inf-convolution and regularization of convex functions on Riemannian manifolds of nonpositive curvature. Revista matemática Complutense 19(2), 323–345 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bačák, M., Bergmann, R., Steidl, G., Weinmann, A.: A second order non-smooth variational model for restoring manifold-valued images. SIAM J. Sci. Comput. 38(1), A567–A597 (2016)

    Article  MATH  Google Scholar 

  7. Bachmann, F., Hielscher, R.: MTEX - MATLAB toolbox for quantitative texture analysis (2005–2016). http://mtex-toolbox.github.io/

  8. Bachmann, F., Hielscher, R., Jupp, P.E., Pantleon, W., Schaeben, H., Wegert, E.: Inferential statistics of electron backscatter diffraction data from within individual crystalline grains. J. Appl. Crystallogr. 43, 1338–1355 (2010)

    Article  Google Scholar 

  9. Balle, F., Eifler, D., Fitschen, J.H., Schuff, S., Steidl, G.: Computation and visualization of local deformation for multiphase metallic materials by infimal convolution of TV-type functionals. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 385–396. Springer, Cham (2015). doi:10.1007/978-3-319-18461-6_31

    Google Scholar 

  10. Bergmann, R., Chan, R.H., Hielscher, R., Persch, J., Steidl, G.: Restoration of manifold-valued images by half-quadratic minimization. Inverse Prob. Imaging 10(2), 281–304 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bergmann, R., Weinmann, A.: Inpainting of cyclic data using first and second order differences. In: Tai, X.-C., Bae, E., Chan, T.F., Lysaker, M. (eds.) EMMCVPR 2015. LNCS, vol. 8932, pp. 155–168. Springer, Cham (2015). doi:10.1007/978-3-319-14612-6_12

    Google Scholar 

  12. Bergmann, R., Weinmann, A.: A second order TV-type approach for inpainting and denoising higher dimensional combined cyclic and vector space data. J. Math. Imaging Vis. 55(3), 401–427 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chambolle, A., Lions, P.-L.: Image recovery via total variation minimization and related problems. Numer. Math. 76(2), 167–188 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Donoho, D.L., Kutyniok, G.: Geometric separation using a wavelet-shearlet dictionary. In: SampTA 2009 (2009)

    Google Scholar 

  16. Giaquinta, M., Mucci, D.: Maps of bounded variation with values into a manifold: total variation and relaxed energy. Pure Appli. Math. Q. 3(2), 513–538 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Holler, M., Kunisch, K.: On infimal convolution of TV-type functionals and applications to video and image reconstruction. SIAM J. Imaging Sci. 7(4), 2258–2300 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lellmann, J., Strekalovskiy, E., Koetter, S., Cremers, D.: Total variation regularization for functions with values in a manifold. In: IEEE ICCV, pp. 2944–2951 (2013)

    Google Scholar 

  19. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. 63(1), 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  20. Papafitsoros, K., Schönlieb, C.B.: A combined first and second order variational approach for image reconstruction. J. Math. Imaging Vis. 2(48), 308–338 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)

    Book  MATH  Google Scholar 

  22. Rosman, G., Tai, X.-C., Kimmel, R., Bruckstein, A.M.: Augmented-Lagrangian regularization of matrix-valued maps. Methods Appl. Anal. 21(1), 121–138 (2014)

    MathSciNet  MATH  Google Scholar 

  23. Rosman, G., Wang, Y., Tai, X.-C., Kimmel, R., Bruckstein, A.M.: Fast regularization of matrix-valued images. In: Bruhn, A., Pock, T., Tai, X.-C. (eds.) Efficient Algorithms for Global Optimization Methods in Computer Vision. LNCS, vol. 8293, pp. 19–43. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54774-4_2

    Chapter  Google Scholar 

  24. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Setzer, S., Steidl, G.: Variational methods with higher order derivatives in image processing. In: Approximation XII: San Antonio 2007, pp. 360–385 (2008)

    Google Scholar 

  26. Setzer, S., Steidl, G., Teuber, T.: Infimal convolution regularizations with discrete \(\ell _1\)-type functionals. Commun. Math. Sci. 9(3), 797–827 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Starck, J.-L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Steidl, G., Setzer, S., Popilka, B., Burgeth, B.: Restoration of matrix fields by second order cone programming. Computing 81, 161–178 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Strekalovskiy, E., Cremers, D.: Total variation for cyclic structures: Convex relaxation and efficient minimization. In: IEEE CVPR , pp. 1905–1911. IEEE (2011)

    Google Scholar 

  30. Sun, S., Adams, B., King, W.: Observation of lattice curvature near the interface of a deformed aluminium bicrystal. Philos. Mag. A 80, 9–25 (2000)

    Article  Google Scholar 

  31. Valkonen, T., Bredies, K., Knoll, F.: Total generalized variation in diffusion tensor imaging. SIAM J. Imaging Sci. 6(1), 487–525 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang, Y., Yin, W., Zeng, J.: Global convergence of ADMM in nonconvex nonsmooth optimization. ArXiv preprint arXiv:1511.06324 (2015)

  33. Weinmann, A., Demaret, L., Storath, M.: Total variation regularization for manifold-valued data. SIAM J. Imaging Sci. 7(4), 2226–2257 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  34. Whitney, H.: Differentiable manifolds. Ann. Math. 37(3), 645–680 (1936)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Funding by the German Research Foundation (DFG) within the project STE 571/13-1 & BE 5888/2-1 and within the Research Training Group 1932, project area P3, is gratefully acknowledged. Furthermore, G. Steidl acknowledges the support by the German Federal Ministry of Education and Research (BMBF) through grant 05M13UKA (AniS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Henrik Fitschen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G. (2017). Infimal Convolution Coupling of First and Second Order Differences on Manifold-Valued Images. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics