A Probabilistic Framework for Curve Evolution

  • Vedrana Andersen DahlEmail author
  • Anders Bjorholm Dahl
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)


In this work, we propose a nonparametric probabilistic framework for image segmentation using deformable models. We estimate an underlying probability distributions of image features from regions defined by a deformable curve. We then evolve the curve such that the distance between the distributions is increasing. The resulting active contour resembles a well studied piecewise constant Mumford-Shah model, but in a probabilistic setting. An important property of our framework is that it does not require a particular type of distributions in different image regions. Additional advantages of our approach include ability to handle textured images, simple generalization to multiple regions, and efficiency in computation. We test our probabilistic framework in combination with parametric (snakes) and geometric (level-sets) curves. The experimental results on composed and natural images demonstrate excellent properties of our framework.


Active Contour Image Region Image Patch Curve Evolution Deformable Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. 28(3), 376–390 (2010)CrossRefGoogle Scholar
  2. 2.
    Brox, T., Weickert, J.: A TV flow based local scale estimate and its application to texture discrimination. J. Vis. Commun. Image Represent. 17(5), 1053–1073 (2006)CrossRefGoogle Scholar
  3. 3.
    Chan, T., Vese, L.: An active contour model without edges. In: Nielsen, M., Johansen, P., Olsen, O.F., Weickert, J. (eds.) Scale-Space 1999. LNCS, vol. 1682, pp. 141–151. Springer, Heidelberg (1999). doi: 10.1007/3-540-48236-9_13 CrossRefGoogle Scholar
  4. 4.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)CrossRefzbMATHGoogle Scholar
  5. 5.
    Dahl, A.B., Dahl, V.A.: Dictionary snakes. In: International Conference on Pattern Recognition (ICPR), pp. 142–147. IEEE (2014)Google Scholar
  6. 6.
    Dahl, A.B., Dahl, V.A.: Dictionary based image segmentation. In: Paulsen, R.R., Pedersen, K.S. (eds.) SCIA 2015. LNCS, vol. 9127, pp. 26–37. Springer, Cham (2015). doi: 10.1007/978-3-319-19665-7_3 CrossRefGoogle Scholar
  7. 7.
    Gao, Y., Bouix, S., Shenton, M., Tannenbaum, A.: Sparse texture active contour. IEEE Trans. Image Process. 22(10), 3866–3878 (2013)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)CrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, J., Fisher, J.W., Yezzi, A., Çetin, M., Willsky, A.S.: A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans. Image Process. 14(10), 1486–1502 (2005)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rousson, M., Brox, T., Deriche, R.: Active unsupervised texture segmentation on a diffusion based feature space. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), vol. 2, pp. II-699. IEEE (2003)Google Scholar
  13. 13.
    Tsai, A., Yezzi Jr., A., Willsky, A.S.: Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, J., Chan, K.L.: Incorporating patch subspace model in Mumford-Shah type active contours. IEEE Trans. Image Process. 22(11), 4473–4485 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Yezzi Jr., A., Tsai, A., Willsky, A.: A statistical approach to snakes for bimodal and trimodal imagery. In: International Conference on Computer Vision (ICCV), vol. 2, pp. 898–903. IEEE (1999)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Applied Mathematics and Computer ScienceTechnical University of DenmarkKongens LyngbyDenmark

Personalised recommendations