Skip to main content

An Efficient Lagrangian Algorithm for an Anisotropic Geodesic Active Contour Model

  • Conference paper
  • First Online:
  • 1315 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

We propose an efficient algorithm to minimize an anisotropic surface energy generalizing the Geodesic Active Contour model for image segmentation. In this energy, the weight function may depend on the normal of the curve/surface. Our algorithm is Lagrangian, but nonparametric. We only use the node and connectivity information for computations. Our approach provides a flexible scheme, in the sense that it allows to easily incorporate the generalized gradients proposed recently, especially those based on the \(H^1\) scalar product on the surface. However, unlike these approaches, our scheme is applicable in any number of dimensions, such as surfaces in 3d or 4d, and allows weighted \(H^1\) scalar products, with weights may depending on the normal and the curvature. We derive the second shape derivative of the anisotropic surface energy, and use it as the basis for a new weighted \(H^1\) scalar product. In this way, we obtain a Newton-type method that not only gives smoother flows, but also converges in fewer iterations and much shorter time.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bar, L., Sapiro, G.: Generalized newton-type methods for energy formulations in image processing. SIAM J. Imaging Sci. 2(2), 508–531 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baust, M., Yezzi, A., Unal, G., Navab, N.: Translation, scale, and deformation weighted polar active contours. J. Math. Imaging Vis. 44(3), 354–365 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonito, A., Nochetto, R.H., Pauletti, M.S.: Geometrically consistent mesh modification. SIAM J. Numer. Anal. 48(5), 1877–1899 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G., Sbert, C.: Minimal surfaces: a geometric three-dimensional segmentation approach. Numer. Math. 77(4), 423–451 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Charpiat, G., Maurel, P., Pons, J.P., Keriven, R., Faugeras, O.: Generalized gradients: priors on minimization flows. IJCV 73(3), 325–344 (2007)

    Article  Google Scholar 

  7. Deckelnick, K., Dziuk, G., Elliott, C.M.: Computation of geometric partial differential equations and mean curvature flow. Acta Numer. 14, 139–232 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Delfour, M.C., Zolésio, J.P.: Shapes and Geometries. Advances in Design and Control. SIAM, Philadelphia (2001)

    MATH  Google Scholar 

  9. Delingette, H., Montagnat, J.: Shape and topology constraints on parametric active contours. Comput. Vis. Image Underst. 83(2), 140–171 (2001)

    Article  MATH  Google Scholar 

  10. Faugeras, O., Keriven, R.: Variational principles, surface evolution, PDE’s, level set methods and the stereo problem. IEEE Trans. Image Process. 7, 336–344 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goldlücke, B., Magnor, M.: Space-time isosurface evolution for temporally coherent 3D reconstruction. In: CVPR I, pp. 350–355, June 2004

    Google Scholar 

  12. Goldlücke, B., Magnor, M.: Weighted minimal hypersurfaces and their applications in computer vision. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3022, pp. 366–378. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24671-8_29

    Chapter  Google Scholar 

  13. Hintermüller, M., Ring, W.: A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 64(2), 442–467 (2003/04)

    Google Scholar 

  14. Jin, H., Soatto, S., Yezzi, A.J.: Multi-view stereo beyond lambert. In: CVPR (1), pp. 171–178. IEEE Computer Society (2003)

    Google Scholar 

  15. Kimmel, R., Bruckstein, A.: Regularized Laplacian zero crossings as optimal edge integrators. IJCV 53(3), 225–243 (2003)

    Article  Google Scholar 

  16. Lachaud, J.O., Montanvert, A.: Deformable meshes with automated topology changes for coarse-to-fine 3D surface extraction. Med. Image Anal. 3(2), 187–207 (1999)

    Article  Google Scholar 

  17. McInerney, T., Terzopoulos, D.: T-snakes: topology adaptive snakes. Med. Image Anal. 4(2), 73–91 (2000)

    Article  Google Scholar 

  18. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer Series in Operations Research. Springer, New York (1999)

    Book  MATH  Google Scholar 

  19. Schmidt, A., Siebert, K.: Design of Adaptive Finite Element Software. Springer, Berlin (2005)

    MATH  Google Scholar 

  20. Sokołowski, J., Zolésio, J.P.: Introduction to Shape Optimization. Springer Series in Computational Mathematics, vol. 16. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  21. Solem, J.E., Overgaard, N.C.: A geometric formulation of gradient descent for variational problems with moving surfaces. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 419–430. Springer, Heidelberg (2005). doi:10.1007/11408031_36

    Chapter  Google Scholar 

  22. Sundaramoorthi, G., Yezzi, A., Mennucci, A.: Coarse-to-fine segmentation and tracking using sobolev active contours. PAMI 30(5), 851–864 (2008)

    Article  MATH  Google Scholar 

  23. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Sobolev active contours. IJCV 73(3), 345–366 (2007)

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work was performed under the financial assistance award 70NANB16H306 from the U.S. Department of Commerce, National Institute of Standards and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Günay Doğan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Doğan, G. (2017). An Efficient Lagrangian Algorithm for an Anisotropic Geodesic Active Contour Model. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics