Advertisement

MAP Image Labeling Using Wasserstein Messages and Geometric Assignment

  • Freddie ÅströmEmail author
  • Ruben Hühnerbein
  • Fabrizio Savarino
  • Judit Recknagel
  • Christoph Schnörr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

Recently, a smooth geometric approach to the image labeling problem was proposed [1] by following the Riemannian gradient flow of a given objective function on the so-called assignment manifold. The approach evaluates user-defined data term and additionally performs Riemannian averaging of the assignment vectors for spatial regularization. In this paper, we consider more elaborate graphical models, given by both data and pairwise regularization terms, and we show how they can be evaluated using the geometric approach. This leads to a novel inference algorithm on the assignment manifold, driven by local Wasserstein flows that are generated by pairwise model parameters. The algorithm is massively edge-parallel and converges to an integral labeling solution.

Keywords

Image labeling Graphical models Message passing Wasserstein distance Assignment manifold Riemannian gradient flow Replicator equation Multiplicative updates 

Notes

Acknowledgments

We gratefully acknowledge support by the German Science Foundation, grant GRK 1653.

References

  1. 1.
    Åström, F., Petra, S., Schmitzer, B., Schnörr, C.: Image labeling by assignment. J. Math. Imaging Vis. 58(2), 211–238 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bergmann, R., Fitschen, J.H., Persch, J., Steidl, G.: Iterative multiplicative filters for data labeling. Int. J. Comput. Vis. 1–19 (2017). http://dx.doi.org/10.1007/s11263-017-0995-9
  3. 3.
    Brualdi, R.: Combinatorial Matrix Classes. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cuturi, M.: Sinkhorn Distances: Lightspeed Computation of Optimal Transport. In: Proceedings of the NIPS (2013)Google Scholar
  5. 5.
    Cuturi, M., Peyré, G.: A smoothed dual approach for variational wasserstein problems. SIAM J. Imag. Sci. 9(1), 320–343 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Danskin, J.: The theory of max min with applications. SIAM J. Appl. Math. 14, 641–664 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kappes, J., Andres, B., Hamprecht, F., Schnörr, C., Nowozin, S., Batra, D., Kim, S., Kausler, B., Kröger, T., Lellmann, J., Komodakis, N., Savchynskyy, B., Rother, C.: A comparative study of modern inference techniques for structured discrete energy minimization problems. Int. J. Comput. Vis. 115(2), 155–184 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kolouri, S., Park, S., Thorpe, M., Slepcev, D., Rohde, G.: Transport-based analysis, modeling, and learning from signal and data distributions (2016). preprint: https://arxiv.org/abs/1609.04767
  9. 9.
    Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. Ser. A 103, 127–152 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Peyré, G.: Entropic approximation of wasserstein gradient flows. SIAM J. Imag. Sci. 8(4), 2323–2351 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rockafellar, R.: On a special class of functions. J. Opt. Theor. Appl. 70(3), 619–621 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Schmidt, M.: UGM: Matlab code for undirected graphical models, January 2017Google Scholar
  13. 13.
    Schneider, M.: Matrix scaling, entropy minimization, and conjugate duality (II): the dual problem. Math. Program. 48, 103–124 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wainwright, M., Jordan, M.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1(1–2), 1–305 (2008)zbMATHGoogle Scholar
  15. 15.
    Weiss, Y.: Comparing the mean field method and belief propagation for approximate inference in MRFs. In: Advanced Mean Field Methods: Theory and Practice, pp. 229–240. MIT Press (2001)Google Scholar
  16. 16.
    Werner, T.: A linear programming approach to max-sum problem: a review. IEEE Trans. Patt. Anal. Mach. Intell. 29(7), 1165–1179 (2007)CrossRefGoogle Scholar
  17. 17.
    Yedidia, J., Freeman, W., Weiss, Y.: Constructing free-energy approximations and generalized belief propagation algorithms. Trans. I. Theor. 51(7), 2282–2312 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Freddie Åström
    • 1
    Email author
  • Ruben Hühnerbein
    • 1
  • Fabrizio Savarino
    • 1
  • Judit Recknagel
    • 1
  • Christoph Schnörr
    • 1
  1. 1.Image and Pattern Analysis Group, RTG 1653Heidelberg UniversityHeidelbergGermany

Personalised recommendations