Dynamic Texture Recognition Using Time-Causal Spatio-Temporal Scale-Space Filters

  • Ylva JanssonEmail author
  • Tony Lindeberg
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)


This work presents an evaluation of using time-causal scale-space filters as primitives for video analysis. For this purpose, we present a new family of video descriptors based on regional statistics of spatio-temporal scale-space filter responses and evaluate this approach on the problem of dynamic texture recognition. Our approach generalises a previously used method, based on joint histograms of receptive field responses, from the spatial to the spatio-temporal domain. We evaluate one member in this family, constituting a joint binary histogram, on two widely used dynamic texture databases. The experimental evaluation shows competitive performance compared to previous methods for dynamic texture recognition, especially on the more complex DynTex database. These results support the descriptive power of time-causal spatio-temporal scale-space filters as primitives for video analysis.


Receptive Field Local Binary Pattern Support Vector Machine Classifier Near Neighbour Linear Dynamical System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hubel, D.H., Wiesel, T.N.: Brain and Visual Perception: The Story of a 25-Year Collaboration. Oxford University Press, Oxford (2005)Google Scholar
  2. 2.
    Lindeberg, T.: Time-causal and time-recursive spatio-temporal receptive fields. J. Math. Imaging Vis. 55, 50–88 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Lindeberg, T.: A computational theory of visual receptive fields. Biol. Cybern. 107, 589–635 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chetverikov, D., Péteri, R.: A brief survey of dynamic texture description and recognition. In: Kurzyński, M., Puchała, E., Woźniak, M., Żołnierek, A. (eds.) Computer Recognition Systems. AINSC, vol. 30, pp. 17–26. Springer, Heidelberg (2005). doi: 10.1007/3-540-32390-2_2 CrossRefGoogle Scholar
  6. 6.
    Linde, O., Lindeberg, T.: Composed complex-cue histograms: an investigation of the information content in receptive field based image descriptors for object recognition. Comput. Vis. Image Underst. 116, 538–560 (2012)CrossRefGoogle Scholar
  7. 7.
    Nelson, R.C., Polana, R.: Qualitative recognition of motion using temporal texture. CVGIP: Image Underst. 56, 78–89 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    Soatto, S., Doretto, G., Wu, Y.N.: Dynamic textures. In: IEEE International Conference on Computer Vision, vol. 2, pp. 439–446 (2001)Google Scholar
  9. 9.
    Ravichandran, A., Chaudhry, R., Vidal, R.: View-invariant dynamic texture recognition using a bag of dynamical systems. In: Computer Vision and Pattern Recognition, pp. 1651–1657 (2009)Google Scholar
  10. 10.
    Wang, L., Liu, H., Sun, F.: Dynamic texture video classification using extreme learning machine. Neurocomputing 174, 278–285 (2016)CrossRefGoogle Scholar
  11. 11.
    Wildes, R.P., Bergen, J.R.: Qualitative spatiotemporal analysis using an oriented energy representation. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 768–784. Springer, Heidelberg (2000). doi: 10.1007/3-540-45053-X_49 CrossRefGoogle Scholar
  12. 12.
    Derpanis, K.G., Wildes, R.P.: Spacetime texture representation and recognition based on a spatiotemporal orientation analysis. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1193–1205 (2012)CrossRefGoogle Scholar
  13. 13.
    Gonçalves, W.N., Machado, B.B., Bruno, O.M.: Spatiotemporal Gabor filters: a new method for dynamic texture recognition. arXiv preprint arXiv:1201.3612 (2012)
  14. 14.
    Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29, 915–928 (2007)CrossRefGoogle Scholar
  15. 15.
    Ren, J., Jiang, X., Yuan, J.: Dynamic texture recognition using enhanced LBP features. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 2400–2404 (2013)Google Scholar
  16. 16.
    Hong, S., Ryu, J., Yang, H.S.: Not all frames are equal: aggregating salient features for dynamic texture classification. In: Multidimensional Systems and Signal Processing (2016). doi: 10.1007/s11045-016-0463-7
  17. 17.
    Arashloo, S.R., Kittler, J.: Dynamic texture recognition using multiscale binarized statistical image features. IEEE Trans. Multimedia 16, 2099–2109 (2014)CrossRefGoogle Scholar
  18. 18.
    Quan, Y., Huang, Y., Ji, H.: Dynamic texture recognition via orthogonal tensor dictionary learning. In: IEEE International Conference on Computer Vision, pp. 73–81 (2015)Google Scholar
  19. 19.
    Schiele, B., Crowley, J.: Recognition without correspondence using multidimensional receptive field histograms. Int. J. Comput. Vis. 36, 31–50 (2000)CrossRefGoogle Scholar
  20. 20.
    Xu, Y., Quan, Y., Zhang, Z., Ling, H., Ji, H.: Classifying dynamic textures via spatiotemporal fractal analysis. Pattern Recogn. 48, 3239–3248 (2015)CrossRefGoogle Scholar
  21. 21.
    Ji, H., Yang, X., Ling, H., Xu, Y.: Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Trans. Image Process. 22, 286–299 (2013)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Ghanem, B., Ahuja, N.: Maximum margin distance learning for dynamic texture recognition. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6312, pp. 223–236. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-15552-9_17 CrossRefGoogle Scholar
  23. 23.
    Yang, F., Xia, G.S., Liu, G., Zhang, L., Huang, X.: Dynamic texture recognition by aggregating spatial and temporal features via ensemble SVMs. Neurocomputing 173, 1310–1321 (2016)CrossRefGoogle Scholar
  24. 24.
    Qi, X., Li, C., Guoying, Z., Hong, X., Pietikäinen, M.: Dynamic texture and scene classification by transferring deep image features. Neurocomputing 171, 1230–1241 (2016)CrossRefGoogle Scholar
  25. 25.
    Koenderink, J.J.: Scale-time. Biol. Cybern. 58, 159–162 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Péteri, R., Fazekas, S., Huiskes, M.J.: Dyntex: a comprehensive database of dynamic textures. Pattern Recogn. Lett. 31, 1627–1632 (2010)CrossRefGoogle Scholar
  27. 27.
    Dubois, S., Péteri, R., Ménard, M.: Characterization and recognition of dynamic textures based on the 2D+T curvelet transform. Sig. Image Video Process. 9, 819–830 (2015)CrossRefGoogle Scholar
  28. 28.
    Jansson, Y., Lindeberg, T.: Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields (2017, in preparation)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Computational Brain Science Lab, Department of Computational Science and Technology, School of Computer Science and CommunicationKTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations