Skip to main content

Directional Total Generalized Variation Regularization for Impulse Noise Removal

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10302))

Abstract

A recently suggested regularization method, which combines directional information with total generalized variation (TGV), has been shown to be successful for restoring Gaussian noise corrupted images. We extend the use of this regularizer to impulse noise removal and demonstrate that using this regularizer for directional images is highly advantageous. In order to estimate directions in impulse noise corrupted images, which is much more challenging compared to Gaussian noise corrupted images, we introduce a new Fourier transform-based method. Numerical experiments show that this method is more robust with respect to noise and also more efficient than other direction estimation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bayram, I., Kamasak, M.E.: A directional total variation. Eur. Signal Process. Conf. 19(12), 265–269 (2012)

    Google Scholar 

  2. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3(3), 492–526 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cai, J.F., Chan, R.H., Nikolova, M.: Fast two-phase image deblurring under impulse noise. J. Math. Imaging Vis. 36(1), 46–53 (2010)

    Article  MathSciNet  Google Scholar 

  4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, R.H., Dong, Y., Hintermuller, M.: An efficient two-phase \(L^1\)-TV method for restoring blurred images with impulse noise. IEEE Trans. Image Process. 19(7), 1731–1739 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chan, R.H., Ho, C.W., Nikolova, M.: Salt-and-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

    Google Scholar 

  7. Dong, Y., Hintermüller, M., Neri, M.: An efficient primal-dual method for \(L^1\)TV image restoration. SIAM J. Imaging Sci. 2(4), 1168–1189 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Easley, G.R., Labate, D., Colonna, F.: Shearlet-based total variation diffusion for denoising. IEEE Trans. Image Process. 18(2), 260–268 (2009)

    Article  MathSciNet  Google Scholar 

  9. Estellers, V., Soatto, S., Bresson, X.: Adaptive regularization with the structure tensor. IEEE Trans. Image Process. 24(6), 1777–1790 (2015)

    Article  MathSciNet  Google Scholar 

  10. Fei, X., Wei, Z., Xiao, L.: Iterative directional total variation refinement for compressive sensing image reconstruction. Signal Process. Lett. IEEE 20(11), 1070–1073 (2013)

    Article  Google Scholar 

  11. Ferstl, D., Reinbacher, C., Ranftl, R., Ruether, M., Bischof, H.: Image guided depth upsampling using anisotropic total generalized variation. Proc. IEEE International Conference on Computer Vision, pp. 993–1000 (2013)

    Google Scholar 

  12. Hafner, D., Schroers, C., Weickert, J.: Introducing maximal anisotropy into second order coupling models. Ger. Conf. Pattern Recognit. 9358, 79–90 (2015)

    MathSciNet  Google Scholar 

  13. Jespersen, K.M., Zangenberg, J., Lowe, T., Withers, P.J., Mikkelsen, L.P.: Fatigue damage assessment of uni-directional non-crimp fabric reinforced polyester composite using X-ray computed tomography. Compos. Sci. Technol. 136, 94–103 (2016)

    Article  Google Scholar 

  14. Kongskov, R.D., Dong, Y., Knudsen, K.: Directional Total Generalized Variation Regularization. submitted (2017). http://arxiv.org/abs/1701.02675

  15. Lefkimmiatis, S., Roussos, A., Maragos, P., Unser, M.: Structure tensor total variation. SIAM J. Imaging Sci. 8(2), 1090–1122 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Ma, L., Ng, M., Yu, J., Zeng, T.: Efficient box-constrained TV-type-l1 algorithms for restoring images with impulse noise. J. Comput. Math. 31(3), 249–270 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ma, L., Yu, J., Zeng, T.: Sparse representation prior and total variation-based image deblurring under impulse noise. SIAM J. Imaging Sci. 6(4), 2258–2284 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Nikolova, M.: Minimizers of cost-functions involving nonsmooth data-fidelity terms. Application to the processing of outliers. Siam J. Numer. Anal. 40(3), 965–994 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nikolova, M.: A variational approach to remove outliers and impulse noise. J. Math. Imaging Vis. 20(1–2), 99–120 (2004)

    Article  MathSciNet  Google Scholar 

  21. Nikolova, M., Chan, R.H., Cai, J.F.: Two-phase approach for deblurring images corrupted by impulse plus Gaussian noise. Inverse Probl. Imaging 2(2), 187–204 (2008)

    MathSciNet  MATH  Google Scholar 

  22. Ranftl, R., Gehrig, S., Pock, T., Bischof, H.: Pushing the limits of stereo using variational stereo estimation. IEEE Intell. Veh. Symp. Proc. 1, 401–407 (2012)

    Google Scholar 

  23. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sandoghchi, S.R., Jasion, G.T., Wheeler, N.V., Jain, S., Lian, Z., Wooler, J.P., Boardman, R.P., Baddela, N.K., Chen, Y., Hayes, J.R., Fokoua, E.N., Bradley, T., Gray, D.R., Mousavi, S.M., Petrovich, M.N., Poletti, F., Richardson, D.J.: X-ray tomography for structural analysis of microstructured and multimaterial optical fibers and preforms. Opt. Express 22(21), 26181 (2014)

    Article  Google Scholar 

  25. Tikhonov, A.N., Arsenin, V.I.: Solutions of ill-posed problmes. Winston, Philadelphia (1977)

    MATH  Google Scholar 

  26. Turgay, E., Akar, G.B.: Directionally adaptive super-resolution. In: 2009 16th IEEE International Conference on Image Processing vol. 1, 1201–1204 (2009)

    Google Scholar 

  27. Zhang, Z., Hartwig, G.: Relation of damping and fatigue damage of unidirectional fibre composites. Int. J. Fatigue 24(7), 713–718 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the reviewers for their comments and suggestions, which has helped to improve this article. The work was supported by Advanced Grant 291405 from the European Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasmus Dalgas Kongskov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kongskov, R.D., Dong, Y. (2017). Directional Total Generalized Variation Regularization for Impulse Noise Removal. In: Lauze, F., Dong, Y., Dahl, A. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2017. Lecture Notes in Computer Science(), vol 10302. Springer, Cham. https://doi.org/10.1007/978-3-319-58771-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58771-4_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58770-7

  • Online ISBN: 978-3-319-58771-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics