Advertisement

Analysis of a Physically Realistic Film Grain Model, and a Gaussian Film Grain Synthesis Algorithm

  • Alasdair NewsonEmail author
  • Noura Faraj
  • Julie Delon
  • Bruno Galerne
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

Film grain is a highly valued characteristic of analog images, thus realistic digital film grain synthesis is an important objective for many modern photographers and film-makers. We carry out a theoretical analysis of a physically realistic film grain model, based on a Boolean model, and derive expressions for the expected value and covariance of the film grain texture. We approximate these quantities using a Monte Carlo simulation, and use them to propose a film grain synthesis algorithm based on Gaussian textures. With numerical and visual experiments, we demonstrate the correctness and subjective qualities of the proposed algorithm.

Keywords

Film grain Gaussian texture Covariance Monte Carlo simulation 

References

  1. 1.
    Bae, S., Paris, S., Durand, F.: Two-scale tone management for photographic look. In: ACM Transactions on Graphics, vol. 25 (2006)Google Scholar
  2. 2.
    Bayer, B.E.: Relation between granularity and density for a random-dot model. J. Opt. Soc. Am. 54(12), 1485+ (1964)CrossRefGoogle Scholar
  3. 3.
    Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications, 3rd edn. Wiley, Hoboken (2013)CrossRefzbMATHGoogle Scholar
  4. 4.
  5. 5.
    Galerne, B., Gousseau, Y., Morel, J.M.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)MathSciNetCrossRefGoogle Scholar
  6. 6.
    G’MIC: Greyc’s magic for image computing (2016). http://gmic.eu/
  7. 7.
    Grubbasoftware: Truegrain (2015). http://grubbasoftware.com/
  8. 8.
    Hoeffding, W.: The strong law of large numbers for u-statistics. Institute of Statistics mimeo series 302 (1961)Google Scholar
  9. 9.
    Livingston, R.: The theory of the photographic process. By C. E. Kenneth Mees. J. Phys. Chem. 49(5), 509 (1945)CrossRefGoogle Scholar
  10. 10.
    Moldovan, T.M., Roth, S., Black, M.J.: Denoising archival films using a learned bayesian model. In: 2006 IEEE International Conference on Image Processing, pp. 2641–2644. IEEE, October 2006Google Scholar
  11. 11.
    Newson, A., Galerne, B., Delon, J.: Stochastic modelling and realistic rendering of film grain. Technical report, Laboratoire MAP5, Université Paris Descartes, France (2016)Google Scholar
  12. 12.
    Oh, B.T., Lei, S.M., Kuo, C.C.: Advanced film grain noise extraction and synthesis for high-definition video coding. IEEE Trans. Circ. Syst. Video Technol. 19(12), 1717–1729 (2009)CrossRefGoogle Scholar
  13. 13.
    Schneider, R., Weil, W.: Stochastic and Integral Geometry. Springer, Heidelberg (2008)CrossRefzbMATHGoogle Scholar
  14. 14.
    Tanaka, K., Uchida, S.: Extended random-dot model. J. Opt. Soc. Am. 73(10), 1312+ (1983)CrossRefGoogle Scholar
  15. 15.
    The CGAL Project: CGAL User and Reference Manual. 4.9 edn. (2016). http://doc.cgal.org/4.9/Manual/packages.html
  16. 16.
    Yan, J.C.K.: Statistical methods for film grain noise removal and generation. Master’s thesis, University of Toronto (1997)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alasdair Newson
    • 1
    Email author
  • Noura Faraj
    • 1
  • Julie Delon
    • 1
  • Bruno Galerne
    • 1
  1. 1.Laboratoire MAP5 (CNRS UMR 8145), Université Paris DescartesParisFrance

Personalised recommendations