Advertisement

A Dynamic Programming Solution to Bounded Dejittering Problems

  • Lukas F. LangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10302)

Abstract

We propose a dynamic programming solution to image dejittering problems with bounded displacements and obtain efficient algorithms for the removal of line jitter, line pixel jitter, and pixel jitter.

References

  1. 1.
    Blake, A., Kohli, P., Rother, C. (eds.): Markov Random Fields for Vision and Image Processing. MIT Press, Cambridge (2011)zbMATHGoogle Scholar
  2. 2.
    Chen, Q., Koltun, V.: Fast MRF optimization with application to depth reconstruction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3914–3921. IEEE, June 2014Google Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  4. 4.
    Dong, G., Patrone, A.R., Scherzer, O., Öktem, O.: Infinite dimensional optimization models and PDEs for dejittering. In: Aujol, J.-F., Nikolova, M., Papadakis, N. (eds.) SSVM 2015. LNCS, vol. 9087, pp. 678–689. Springer, Cham (2015). doi: 10.1007/978-3-319-18461-6_54 Google Scholar
  5. 5.
    Felzenszwalb, P.F., Zabih, R.: Dynamic programming and graph algorithms in computer vision. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 721–740 (2011)CrossRefGoogle Scholar
  6. 6.
    Kang, S.H., Shen, J.: Video dejittering by bake and shake. Image Vis. Comput. 24(2), 143–152 (2006)CrossRefGoogle Scholar
  7. 7.
    Kang, S.H., Shen, J.: Image dejittering based on slicing moments. In: Tai, X.C., Lie, K.A., Chan, T.F., Osher, S. (eds.) Image Processing Based on Partial Differential Equations. Mathematics and Visualization, pp. 35–55. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Kokaram, A., Rayner, P.: An algorithm for line registration of TV images based on a 2-D AR model. In: Proceedings of Signal Processing VI, Theories and Applications, pp. 1283–1286. European Association for Signal Processing (1992)Google Scholar
  9. 9.
    Kokaram, A., Rayner, P., Van Roosmalen, P., Biemond, J.: Line registration of jittered video. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 4, pp. 2553–2556. IEEE Computer Society (1997)Google Scholar
  10. 10.
    Kokaram, A.C.: Motion Picture Restoration: Digital Algorithms for Artefact Suppression in Degraded Motion Picture Film and Video. Springer, London (1998)CrossRefGoogle Scholar
  11. 11.
    Laborelli, L.: Removal of video line jitter using a dynamic programming approach. In: Proceedings of International Conference on Image Processing, (ICIP 2003), vol. 2, pp. II-331–II-334, September 2003Google Scholar
  12. 12.
    Lenzen, F., Scherzer, O.: A geometric PDE for interpolation of M-channel data. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 413–425. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02256-2_35 CrossRefGoogle Scholar
  13. 13.
    Lenzen, F., Scherzer, O.: Partial differential equations for zooming, deinterlacing and dejittering. Int. J. Comput. Vis. 92(2), 162–176 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Menze, M., Heipke, C., Geiger, A.: Discrete optimization for optical flow. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358, pp. 16–28. Springer, Cham (2015). doi: 10.1007/978-3-319-24947-6_2 CrossRefGoogle Scholar
  15. 15.
    Nikolova, M.: Fast dejittering for digital video frames. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 439–451. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-02256-2_37 CrossRefGoogle Scholar
  16. 16.
    Nikolova, M.: One-iteration dejittering of digital video images. J. Vis. Commun. Image Represent. 20, 254–274 (2009)CrossRefGoogle Scholar
  17. 17.
    Scherzer, O., Grasmair, M., Grossauer, H., Haltmeier, M., Lenzen, F.: Variational Methods in Imaging. Applied Mathematical Sciences, vol. 167. Springer, New York (2009)zbMATHGoogle Scholar
  18. 18.
    Shen, J.: Bayesian video dejittering by BV image model. SIAM J. Appl. Math. 64(5), 1691–1708 (2004)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations