Skip to main content

Mineral Resource Exploration

  • Chapter
  • First Online:
Book cover Mineral Resources

Abstract

This chapter is concerned with the process of analyzing an area to find mineral deposits, which is termed mineral resource exploration. The information collected during exploration is utilized to evaluate the size and quality of an ore deposit and to establish there is an option for it to be mined. Two main phases can be broadly outlined in mineral resource exploration: reconnaissance exploration and detailed exploration. The geological, geophysical, and geochemical methods applied at different stages of mineral resource exploration are described. The methods are organized in order of scale and stage, from remote sensing to drilling, through photogeology, geophysical, and geochemical surveys. Previously, mineral deposit models are applied to predict how and where mineral deposits might occur. Since large databases are generated in geochemical exploration, the main statistical techniques (univariate, bivariate, and multivariate methods) are commented in this heading. Finally, several exploration case studies are summarized to show the main items of mineral resource exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 69.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adcock SW, Spirito WA, Garrett RG (2013) Geochemical data management – issues and solutions. Geochem Explor Environ Anal 13:337–348

    Article  Google Scholar 

  • Agterberg FP (1974) Geomathematics. Elsevier, Amsterdam, 596 pp

    Google Scholar 

  • Averill SA (2001) The application of heavy indicator minerals in mineral exploration. In: McClenagham MB, Bobrowsky PT, Hall GEM, Cook S (eds) Drift exploration in glaciated terrain special volume, 185. Geological Society, London, pp 69–82

    Google Scholar 

  • Barton PB Jr (1993) Problems and opportunities for mineral deposit models. In: Kirkham RV, Sinclair WD, Thorpe RI, Duke JM (eds) Mineral deposit modeling. Geological Association of Canada Special Paper 40, St. John's, pp 7–13

    Google Scholar 

  • Black G (2010) Selecting the right core bit. In: Smith M (ed) Exploration drilling. Atlas Copco Craelius AB, Märsta, pp 36–38

    Google Scholar 

  • Brimhall GH, Dilles JH, Proffett JM (2006) The role of geologic mapping in mineral exploration. Soc Econ Geol Spec Pub 12:221–241

    Google Scholar 

  • Brooks RR, Dunn CE, Hall GEM (1995) Biological systems in mineral exploration and processing. Ellis Horwood, London, 500 p

    Google Scholar 

  • Carranza EJM (2009) Geochemical anomaly and mineral prospectivity mapping in GIS. In: Hale M (ed) Handbook of exploration and environmental geochemistry, vol 11. Elsevier, Amsterdam

    Google Scholar 

  • Chen S, Hattori K, Grunsky EC (2015) Multivariate statistical analysis of the REE-mineralization of the maw zone, Athabasca Basin, Canada. J Geochem Explor 161:98–111

    Article  Google Scholar 

  • Cohen DR, Kelley DL, Anand R, Coker WB (2007) Major Advances in Exploration Geochemistry, 1998–2007. In “Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration” edited by B. Milkereit, pp 3–18

    Google Scholar 

  • Cox DPY, Singer D (eds) (1986) Mineral deposit models. US Geol Surv Bull 1693:379 pp

    Google Scholar 

  • Davis JC (2002) Statistics and data analysis in geology, 3rd edn. Wiley, New York, 656 p

    Google Scholar 

  • Dentith M, Mudge ST (2014) Geophysics for the mineral exploration geoscientist. Cambridge University Press, New York, 454 p

    Google Scholar 

  • Dirik K (2005) Advanced photogeology – lecture notes. Geological Engineering Dept., Hacettepe University, 45 p

    Google Scholar 

  • Duke JM (1990) Mineral deposit models: nickel sulfide deposits of the Kambala type. Can Mineral 28:379–388

    Google Scholar 

  • Dunn CE (2007) Biogeochemistry in mineral exploration: handbook of exploration and environmental geochemistry, vol 9. Elsevier, Amsterdam

    Book  Google Scholar 

  • Eaton DW, Milkereit B, Salisbury M (2003) Seismic methods for deep mineral exploration: mature technologies adapted to new targets. Lead Edge 22:580–585

    Article  Google Scholar 

  • Ellis DV, Singer JM (2007) Well logging for Earth scientists, 2nd edn. Springer, Dordrecht, 692 p

    Book  Google Scholar 

  • Evans AM, Moon CJ (2006) Mineral deposit geology and models. In: Moon CJ, Whateley MKG, Evans AM (eds) Introduction to mineral exploration, 2nd edn. Blackwell Publishing, Ltd., Oxford, pp 33–51

    Google Scholar 

  • Freitas H, Prasad MNV, Pratas J (2004) Analysis of serpentinophytes from north-east of Portugal for trace metal accumulation relevance to the management of mine environment. Chemosphere 54:1625–1642

    Article  Google Scholar 

  • Garrett RG, Reimann C, Smith DB, Xie X (2008) From geochemical prospecting to international geochemical mapping: a historical overview. Geochem Explor Environ Anal 8:205–217

    Article  Google Scholar 

  • Gazley MF, Tutt CM, Fisher LA, Latham AR, Duclaux G, Taylor MD, de Beer SJ (2014) Objective geological logging using portable XRF geochemical multi-element data at plutonic gold mine, Marymia Inlier, Western Australia. J Geochem Explor 143:74–83

    Article  Google Scholar 

  • Gocht WR, Zantop HY, Eggert RG (1988) International mineral economics. Springer, Berlin, 271 p

    Book  Google Scholar 

  • Govett GJS (1983) Rock geochemistry in mineral exploration. Handbook of exploration geochemistry, 3rd edn. Elsevier, Amsterdam, 440 pp

    Google Scholar 

  • Grunsky EC (2010) The interpretation of geochemical survey data. Geochem: Explor, Environ Anal 10:27–74

    Google Scholar 

  • Gustaffson A (2010) Trends in exploration. In: Smith M (ed) Exploration drilling. Atlas Copco Craelius AB, Märsta, pp 3–7

    Google Scholar 

  • Hartley JS (1994) Drilling: tools and programme management. A.A. Balkeema, Rotterdam, 150 p

    Google Scholar 

  • Hartman HL, Mutmansky JM (2002) Introductory mining engineering, 2nd edn. Wiley, New York, 584 p

    Google Scholar 

  • Hawkes HE (1957) Principles of geochemical prospecting. Geological Survey Bulletin 1000-F, 355 p

    Google Scholar 

  • Hawkes HE, Webb JS (1962) Geochemistry in mineral exploration. Harper and Row, New York, 415 p

    Google Scholar 

  • Heinrich CA, Walshe JL, Harrold BP (1996) Chemical mass transfer modelling of ore-forming hydrothermal systems: current practise and problems. Ore Geol Rev 10:319–338

    Article  Google Scholar 

  • Henley S, Doyle M (2005) Reporting bias as a result of Core Loss at Las Cruces: A case study. Natural Resources Research 14:19–30

    Article  Google Scholar 

  • Herrington R (2011) Geological features and genetic models of mineral deposits. In: Darling P (ed) SME mining engineering handbook, 3rd edn. Society for Mining, Metallurgy, and Exploration, Inc, Englewood, pp 83–104

    Google Scholar 

  • Hitzman MW, Large D (1986) A review and classification of the Irish carbonate-hosted base metal deposits. In: Andrews CJ, RWA C, Finlay S, Pennell WM, Pyne JF (eds) The Irish minerals industry 1980–1990. Irish Association for Economic Geology, Dublin, pp 217–238

    Google Scholar 

  • Hodgson CJ (1990) Uses (an abuses) of ore deposit models in mineral exploration. In: Shearan PA, Cherry YME (eds) Ore deposit models, vol. II. St John´s, Canada, Geoscience Canada, Reprint series, 6, pp 1–11

    Google Scholar 

  • Hoseinie SH, Aghababaei H, Pourrahimian Y (2008) Development of a new classification system for assessing of rock mass drillability index (RDi). Int J Rock Mech Min Sci 45:1–10

    Article  Google Scholar 

  • Johnson BJ, Montante-Martinez A, Canela-Barboza M, Danielson TJ (2000) Geology of the san Nicolas deposit, Zacatecas, Mexico. In: Sherlock R, MAV L (eds) VMS deposits of latin America, vol 2. Geological Association of Canada, Mineral Deposits Division, Special Publication, St. John’s, pp 71–86

    Google Scholar 

  • Kearey P, Brooks M, Hill I (2002) An introduction to geophysical exploration, 3rd edn. Blackwell Science Ltd., Malden, 268 p

    Google Scholar 

  • Knox-Robinson CM (2000) Vectoral fuzzy logic: a novel technique for enhanced mineral prospectivity mapping, with reference to orogenic gold mineralisation potential of the Kalgoorlie terrane. Western Australia Australian J Earth Sci 47:929–941

    Article  Google Scholar 

  • Kutina J (1969) Hydrothermal ore deposits in the western United States; a new concept of structural control of distribution. Science 165:1113–1119

    Article  Google Scholar 

  • Laake A (2011) Integration of satellite imagery, geology and geophysical data. In: Ahmad Dar I, Ahmar Dar M (eds), Earth and environmental sciences, InTechOpen: Rijeka, 467-492

    Google Scholar 

  • LaFehr TR (1991) Standardization in gravity reduction. Geophysics 56:1170–1178

    Article  Google Scholar 

  • Lasky SG (1950) How tonnage and grade relations help predict ore reserves. Eng Min J 151:81–85

    Google Scholar 

  • Leca X (1990) Discovery of a concealed massive sulphide deposit at Neves-Corvo, southern Portugal – a case history. Trans Inst Min Metall Sect B 99:B139–B152

    Google Scholar 

  • Levinson AA (1974) Introduction to exploration geochemistry. Applied Publishing Ltd., Calgary, 611 p

    Google Scholar 

  • Leybourne MI, Cameron EM (2007) Groundwaters in geochemical exploration: methods, applications, and future directions. Advances in Regional-Scale Geochemical Methods. In “Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration” edited by B. Milkereit, pp 201–221

    Google Scholar 

  • Likkason OK (2014) Exploring and using the Magnetic methods. In: Marghany M (ed) Advanced geoscience remote sensing. InTech, Croatia, pp 141–174

    Google Scholar 

  • Ludington S, Cox DP, Singer DA, Sherlock MG, Berger BR, Tingley JV (1993) Spatial and temporal analysis of precious-metal deposits for a mineral resource assessment of Nevada: Geological Association of Canada Special Paper 40, pp 31–40

    Google Scholar 

  • Lulin JM (1990) Une analyse du développement minier du Nord-Ouest québécois. In: Rive M, Verpaelst P, Gagnon Y, Lulin JM, Riverin G, Simard A (eds) The northwestern Quebec polymetallic belt, vol 43. Canadian Institute of Mining and Metallurgy, Montreal, pp 17–34

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. W.H. Freeman and Company, New York, 469 pp

    Google Scholar 

  • Marjoribanks R (2010) Geological methods in mineral exploration and mining. Springer, Berlin, 238 p

    Book  Google Scholar 

  • McClenaghan MB (2005) Indicator mineral methods in mineral exploration. Geochem: Explor, Environ, Anal 5:233–245

    Google Scholar 

  • McGauchy J (2007). Geological models, rock properties and the 3D inversion of geophysical data. In: Milkereit B (ed) Proceedings of exploration ‘07: Fifth decennial international conference on mineral exploration, Toronto, Canada, pp 473–483

    Google Scholar 

  • McKillup S, Dyar MD (eds) (2010) Geostatistics explained. An Introductory Guide for Earth Scientists. Cambridge University Press, Cambridge, 412 p

    Google Scholar 

  • McPhee C, Reed J, Zubizarreta I (2015) Core analysis: a best practice guide. Developments in petroleum sciences 64, Elsevier, Amsterdam. 852 p

    Google Scholar 

  • Milson J (2006) Geophysical methods. In: Moon CJ, Whateley MKG, Evans AM (eds) Introduction to mineral exploration, 2nd edn. Blackwell Publishing, Ltd., Oxford, pp 127–154

    Google Scholar 

  • Moon CJ (2006) Exploration geochemistry. In: Moon CJ, Whateley MKG, Evans AM (eds) Introduction to mineral exploration, 2nd edn. Blackwell Publishing, Ltd., Oxford, pp 155–178

    Google Scholar 

  • Moon CJ, Whateley MKG (2006) Reconnaissance exploration and from Prospect to prefeasibility. In: Moon CJ, Whateley MKG, Evans AM (eds) Introduction to mineral exploration, 2nd edn. Blackwell Publishing, Ltd., Oxford, pp 52–103

    Google Scholar 

  • Mosier DL, Singer DA, Moring BC, Galloway JP (2012) Podiform chromite deposits—database and grade and tonnage models: U.S. Geological Survey Scientific Investigations Report 2012–5157, 45 p

    Google Scholar 

  • Mukherjee S (2011) Applied mineralogy applications in industry and environment. Springer, Dordrecht/New York, 575 p

    Google Scholar 

  • Mwenifumbo CJ, Mwenifumbo AL (2013) Geophysical logging methods for uranium geology and exploration. Geological Survey of Canada, Technical Note 4, 43 p

    Google Scholar 

  • Närhi P, Middleton M, Sutinen R (2014) Biogeochemical multi-element signatures in common juniper at Mäkärärova, Finnish Lapland: implications for Au and REE exploration. J Geochem Explor 138:50–58

    Google Scholar 

  • Oldenburg DW, Pratt DA (2007). Geophysical inversion for mineral exploration: a decade of progress in theory and practice. In: Milkereit B (ed) Proceedings of exploration 07: Fifth decennial international conference on mineral exploration, Toronto, Canada, pp 61–95

    Google Scholar 

  • Paterson NR (2003) Geophysical developments and mine discoveries in the 20th century. Lead Edge 22(6):558–561

    Google Scholar 

  • Plumlee GS, Nash JT (1995) Geoenvironmental models of mineral deposits – fundamentals and applications: U.S. Geol Surv Open-File Rep 95-831:1–9

    Google Scholar 

  • Pohl WL (2011) Economic geology: principles and practice. In: Metals, minerals, coal and hydrocarbons – introduction to formation and sustainable exploitation of mineral deposits. Blackwell Publishing Ltd., Oxford, 663 p

    Google Scholar 

  • Rajabzadeh MA, Ghasemkhani E, Khosravi A (2015) Biogeochemical study of chromite bearing zones in Forumad area, Sabzevar ophiolite, northeastern Iran. J Geochem Explor 151:41–49

    Google Scholar 

  • Reeve JS, Cross KC, Smith RN, Oreskes N (1990) Olympic dam copper–uranium–silver deposit. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy, Melbourne, pp 1009–1035

    Google Scholar 

  • Reid N, Hill SM (2010) Biogeochemical sampling for mineral exploration in arid terrains: Tanami Gold Province, Australia. J Geochem Explor 104:105–117

    Article  Google Scholar 

  • Robinson LJ (2007) The spatial and temporal distribution of the metal mineralisation in Eastern Australia and the relationship of the observed patterns to giant ore deposits. Thesis, University of Queensland, Australia, 258 p

    Google Scholar 

  • Rossi ME, Deutsch DV (2014) Mineral resource estimation. Springer Science + Business Media, Dordrecht, 332 p

    Google Scholar 

  • Rutter H, Esdale DJ (1985) The geophysics of the Olympic dam discovery. Bull Aust Soc Explor Geophys 16:273–276

    Google Scholar 

  • Sabbins FF, Oliver S (2004) Remote sensing for mineral exploration. Ore Geol Rev 14:157–183

    Article  Google Scholar 

  • Safronov NI (1936) Dispersion haloes of ore deposits and their use in exploration. Probl Sov Geol 4:41–53

    Google Scholar 

  • Samuelsson B (2007) Geology for underground mining. In: Smith M (ed) Mining methods in underground mining. Atlas Copco Craelius AB, Märsta, pp 7–12

    Google Scholar 

  • Schulz KJ (2012) Regional environment in volcanogenic massive sulfide occurrence model. U.S. Geological Survey Scientific Investigations Report 2010–5070 –C, chap. 4, 24 p.

    Google Scholar 

  • Schulz KJ, Woodruff LG, Nicholson SW, Seal RR, II, Piatak NM, Chandler VW, Mars JL (2014) Occurrence model for magmatic sulfide-rich nickel-copper-(platinum-group element) deposits related to mafic and ultramafic dike-sill complexes: U.S. Geological Survey Scientific Investigations Report 2010–5070–I, 80 p

    Google Scholar 

  • Seal RR, Foley NK, Wanty RB (2002) Introduction to geoenvironmental models of mineral deposits. In: Seal RR, Fowley NK (eds) Progress on geoenvironmental models for selected mineral deposit types, U. S. Geological Survey Open-File Report 02-195:1–7

    Google Scholar 

  • Shen P, Shen Y, Liu T, Li G, Zeng Q (2008) Prediction of hidden Au and Cu-Ni ores from depleted mines in Northwestern China: four case studies of integrated geological and geophysical investigations. Mineral Deposita 43:499–517

    Google Scholar 

  • Sinclair AJ, Blackwell GH (2002) Applied mineral inventory estimation. Cambridge University Press, New York, 381 pp

    Book  Google Scholar 

  • Sinclair AJ, Nowak MS, Radlowski ZA (1993) Geostatistical estimation of dilution by barren dykes at Snip gold mine and Virginia porphyry Cu–Au deposit; in Elbrond, J., and X. Tang (eds) Proc. 24th Symp. on Application of computers and operations research to the minerals industry, Oct. 31–Nov. 3, Montreal, vol 2, pp 438–444

    Google Scholar 

  • Singer DA (1995) World class base-and precious-metal deposits-a quantitative analysis. Econ. Geol. 90:88–104

    Google Scholar 

  • Singer DA, Menzie WD, Sutphin D, Mosier DL, Bliss JD (2001) Mineral deposit density—an update. In: Schulz KJ (ed) Contributions to global mineral resource assessment research. US Geological Survey Professional Paper 1640–A, A1–A13

    Google Scholar 

  • Sirotinskaya SV (2004) Cause-effect analysis in assessment of mineral resources. Nat Resour Res 13(1):17–28

    Article  Google Scholar 

  • Stevens R (2010) Mineral exploration and mining essentials. Pakawau Geomanagement Inc., Port Coquitlam, 322 p

    Google Scholar 

  • Swan ARH, Sandilands M (1995) Introduction to geological data analysis. Blackwell Science, London, 446 p

    Google Scholar 

  • Thuro K (1997) Drillability prediction—geological influences in hard rock drill and blast tunneling. Geol Rundsch 86:426–438

    Google Scholar 

  • Walters S, Skrzeczynski B, Whiting T, Bunting F, Arnold G (2002) Discovery and geology of the Cannington Ag–Pb–Zn deposit, Mount Isa Eastern Succession, Australia: development and application of an exploration model for Broken Hill-type deposits. In: Goldfarb RJ, Neilsen RL (eds) Integrated methods for discovery: global exploration in the twenty first century, vol 9. Economic Geology Special Publications, London, pp 95–118

    Google Scholar 

  • Wang X (2015) China geochemical baselines: Sampling methodology. J Geochem Explor 148:25–39

    Google Scholar 

  • Wilburn DR, Karl NA (2016) Exploration Review, Annual Review 2015. Mining Engineering 68:30–51

    Google Scholar 

  • Whateley MKG (2006) Remote sensing. In: Moon CJ, Whateley MKG, Evans AM (eds) Introduction to mineral exploration, 2nd edn. Blackwell Publishing, Ltd., Oxford, pp 104–126

    Google Scholar 

  • Winchester S (2001) The map that changed the world. Harper Collins, New York, 329 p

    Google Scholar 

  • Yarali O, Kahraman S (2011) The drillability assessment of rocks using the different brittleness values. Tunn Undergr Space Technol 26:406–414

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Bustillo Revuelta, M. (2018). Mineral Resource Exploration. In: Mineral Resources. Springer Textbooks in Earth Sciences, Geography and Environment. Springer, Cham. https://doi.org/10.1007/978-3-319-58760-8_3

Download citation

Publish with us

Policies and ethics