Skip to main content

Can We Locally Compute Sparse Connected Subgraphs?

  • Conference paper
  • First Online:
Computer Science – Theory and Applications (CSR 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10304))

Included in the following conference series:

  • 677 Accesses

Abstract

How can we solve optimization problems on data that is so large, that we cannot hope to view more than a miniscule fraction of it? When attempting to solve optimization problems on big data, we are presented with a double catastrophe, as both the inputs to and the outputs from the computation are large. One ray of hope is that often, the portion of the output that is needed by the user is, in fact, of a more manageable size. In such a situation, it would be useful if one could find very fast ways of computing only the portion of the output that is required by the user.

R. Rubinfeld—Supported by ISF grant 1147/09 and NSF grant CCF-1650733.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use the word probe to refer to the LCAs views of locations in the input and query to refer to the user requests to the LCA.

References

  1. Ailon, N., Chazelle, B., Comandur, S., Liu, D.: Property-preserving data reconstruction. Algorithmica 51(2), 160–182 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Rubinfeld, R., Vardi, S., Xie, N.: Space-efficient local computation algorithms. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), Kyoto, January 2012

    Google Scholar 

  3. Andersen, R., Borgs, C., Chayes, J., Hopcroft, J., Mirrokni, V., Teng, S.: Local computation of pagerank contributions. Internet Math. 5(1–2), 23–45 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pp. 475–486 (2006)

    Google Scholar 

  5. Andersen, R., Peres, Y.: Finding sparse cuts locally using evolving sets. In: Proceedings of the 41st Annual ACM Symposium on the Theory of Computing, pp. 235–244 (2009)

    Google Scholar 

  6. Arora, S., Sudan, M.: Improved low-degree testing and its applications. Combinatorica 23(3), 365–426 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Awasthi, P., Jha, M., Molinaro, M., Raskhodnikova, S.: Limitations of local filters of Lipschitz and monotone functions. In: Gupta, A., Jansen, K., Rolim, J., Servedio, R. (eds.) APPROX/RANDOM-2012. LNCS, vol. 7408, pp. 374–386. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32512-0_32

    Chapter  Google Scholar 

  8. Barenboim, L., Elkin, M.: Distributed (\(\Delta +1\))-coloring in linear (in \(\Delta \)) time. In: Proceedings of the 41st Annual ACM Symposium on the Theory of Computing, pp. 111–120 (2009)

    Google Scholar 

  9. Barenboim, L., Elkin, M.: Deterministic distributed vertex coloring in polylogarithmic time. In: Proceedings of the 29th ACM Symposium on Principles of Distributed Computing, pp. 410–419 (2010)

    Google Scholar 

  10. Barenboim, L., Elkin, M., Pettie, S., Schneider, J.: The locality of distributed symmetry breaking. J. ACM 63(3), 20 (2016)

    Article  MathSciNet  Google Scholar 

  11. Ben-Aroya, A., Efremenko, K., Ta-Shma, A.: Local list-decoding with a constant number of queries, Technical report TR10-047, Electronic Colloquium on Computational Complexity, April 2010

    Google Scholar 

  12. Berkhin, P.: Bookmark-coloring algorithm for personalized pagerank computing. Internet Mathematics 3(1), 41–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bhattacharyya, A., Grigorescu, E., Jha, M., Jung, K., Raskhodnikova, S., Woodruff, D.P.: Lower bounds for local monotonicity reconstruction from transitive-closure spanners. SIAM J. Discrete Math. 26(2), 618–646 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Campagna, A., Guo, A., Rubinfeld, R.: Local reconstructors and tolerant testers for connectivity and diameter. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM-2013. LNCS, vol. 8096, pp. 411–424. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40328-6_29

    Chapter  Google Scholar 

  15. Chazelle, B., Rubinfeld, R., Trevisan, L.: Approximating the minimum spanning tree weight in sublinear time. SIAM J. Comput. 34(6), 1370–1379 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cornejo, A.: Local distributed algorithms for multi-robot systems. Ph.D. thesis, MIT (2012)

    Google Scholar 

  17. Cornejo, A., Kuhn, F., Ley-Wild, R., Lynch, N.: Keeping mobile robot swarms connected. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805, pp. 496–511. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04355-0_50

    Chapter  Google Scholar 

  18. Czumaj, A., Ergun, F., Fortnow, L., Magen, A., Newman, I., Rubinfeld, R., Sohler, C.: Sublinear-time approximation of euclidean minimum spanning tree. SIAM J. Comput. 35(1), 91–109 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Czumaj, A., Sohler, C.: Sublinear-time algorithms. Bull. Eur. Assoc. Theor. Comput. Sci. 89, 23–47 (2006)

    MathSciNet  MATH  Google Scholar 

  20. Czumaj, A., Sohler, C.: Estimating the weight of metric minimum spanning trees in sublinear time. SIAM J. Comput. 39(3), 904–922 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dutta, A., Levi, R., Ron, D., Rubinfeld, R.: A simple online competitive adaptation of Lempel-Ziv compression with efficient random access support. In: Proceedings of the Data Compression Conference (DCC), pp. 113–122 (2013)

    Google Scholar 

  22. Elkin, M., Peleg, D.: The hardness of approximating spanner problems. Theor. Comput. Syst. 41(4), 691–729 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Even, G., Medina, M., Ron, D.: Best of two local models: local centralized and local distributed algorithms. CoRR abs/1402.3796 (2014). http://arxiv.org/abs/1402.3796

  24. Feigenbaum, D.B.J.: Hiding instances in multi-oracle queries. In: Proceedings of the 7th Annual STACS Conference, pp. 34–48 (1990)

    Google Scholar 

  25. Feigenbaum, J., Fortnow, L.: Random self-reducibility of complete sets. SIAM J. Comput. 22, 994–1005 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ferragina, P., Venturini, R.: A simple storage scheme for strings achieving entropy bounds. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 690–696 (2007)

    Google Scholar 

  27. Fraigniaud, P., Korman, A., Peleg, D.: Local distributed decision. CoRR abs/1011.2152 (2010)

    Google Scholar 

  28. Gemmell, P., Lipton, R., Rubinfeld, R., Sudan, M., Wigderson, A.: Self-testing/correcting for polynomials and for approximate functions. In: Proceedings of the 23rd Annual ACM Symposium on the Theory of Computing, pp. 32–42 (1991)

    Google Scholar 

  29. Ghaffari, M.: An improved distributed algorithm for maximal independent set. In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, 10–12 January 2016, pp. 270–277 (2016). http://dx.doi.org/10.1137/1.9781611974331.ch20

  30. Goldreich, O., Rubinfeld, R., Sudan, M.: Learning polynomials with queries: the highly noisy case. SIAM J. Discrete Math. 13(4), 535–570 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. González, R., Navarro, G.: Statistical encoding of succinct data structures. In: Lewenstein, M., Valiente, G. (eds.) CPM 2006. LNCS, vol. 4009, pp. 294–306. Springer, Heidelberg (2006). doi:10.1007/11780441_27

    Chapter  Google Scholar 

  32. Göös, M., Hirvonen, J., Levi, R., Medina, M., Suomela, J.: Non-local probes do not help with many graph problems. In: Gavoille, C., Ilcinkas, D. (eds.) DISC 2016. LNCS, vol. 9888, pp. 201–214. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53426-7_15

    Chapter  Google Scholar 

  33. Gopalan, P., Klivans, A.R., Zuckerman, D.: List-decoding Reed Muller codes over small fields. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, pp. 265–274 (2008)

    Google Scholar 

  34. Hasidim, A., Kelner, J., Nguyen, H.N., Onak, K.: Local graph partitions for approximation and testing. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 22–31 (2009)

    Google Scholar 

  35. Hassidim, A., Mansour, Y., Vardi, S.: Local computation mechanism design. CoRR abs/1311.3939 (2013)

    Google Scholar 

  36. Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: derandomizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, pp. 220–229 (1997)

    Google Scholar 

  37. Jeh, G., Widom, J.: Scaling personalized web search. In: Proceedings of the 12th International Conference on World Wide Web, pp. 271–279 (2003)

    Google Scholar 

  38. Jha, M., Raskhodnikova, S.: Testing and reconstruction of Lipschitz functions with applications to data privacy. SIAM J. Comput. 42(2), 700–731 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kale, S., Peres, Y., Seshadhri, C.: Noise tolerance of expanders and sublinear expansion reconstruction. SIAM J. Comput. 42(1), 305–323 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Katz, J., Trevisan, L.: On the efficiency of local decoding procedures for error-correcting codes. In: Proceedings of the 32nd Annual ACM Symposium on the Theory of Computing, pp. 80–86 (2000)

    Google Scholar 

  41. Kopparty, S., Saraf, S.: Local list-decoding and testing of sparse random linear codes from high-error, Technical report 115, Electronic Colloquium on Computational Complexity (ECCC) (2009)

    Google Scholar 

  42. Kuhn, F.: Local multicoloring algorithms: computing a nearly-optimal TDMA schedule in constant time. In: Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science, pp. 613–624 (2009)

    Google Scholar 

  43. Kuhn, F., Moscibroda, T.: Distributed approximation of capacitated dominating sets. In: Proceedings of the 19th Annual ACM Symposium on Parallelism in Algorithms and Architectures, pp. 161–170 (2007)

    Google Scholar 

  44. Kuhn, F., Moscibroda, T., Nieberg, T., Wattenhofer, R.: Fast deterministic distributed maximal independent set computation on growth-bounded graphs. In: Fraigniaud, P. (ed.) DISC 2005. LNCS, vol. 3724, pp. 273–287. Springer, Heidelberg (2005). doi:10.1007/11561927_21

    Chapter  Google Scholar 

  45. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In: Proceedings of the 23rd ACM Symposium on Principles of Distributed Computing, pp. 300–309 (2004)

    Google Scholar 

  46. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 980–989 (2006)

    Google Scholar 

  47. Kuhn, F., Wattenhofer, R.: On the complexity of distributed graph coloring. In: Proceedings of the 25th ACM Symposium on Principles of Distributed Computing, pp. 7–15 (2006)

    Google Scholar 

  48. Levi, R., Moshkovitz, G., Ron, D., Rubinfeld, R., Shapira, A.: Constructing near spanning trees with few local inspections. Random Struct. Algorithms (2016)

    Google Scholar 

  49. Levi, R., Ron, D., Rubinfeld, R.: Local algorithms for sparse spanning graphs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2014, 4–6 September 2014, Barcelona, pp. 826–842 (2014)

    Google Scholar 

  50. Levi, R., Ron, D., Rubinfeld, R.: A local algorithm for constructing spanners in minor-free graphs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016, 7–9 September 2016, Paris, pp. 38:1–38:15 (2016)

    Google Scholar 

  51. Levi, R., Rubinfeld, R., Yodpinyanee, A.: Brief announcement: local computation algorithms for graphs of non-constant degrees. In: Proceedings of the 27th ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2015, Portland, 13–15 June 2015, pp. 59–61 (2015). http://doi.acm.org/10.1145/2755573.2755615

  52. Lipton, R.: New directions in testing. In: Proceedings of the DIMACS Workshop on Distributed Computing and Cryptography (1989)

    Google Scholar 

  53. Mansour, Y., Rubinstein, A., Vardi, S., Xie, N.: Converting online algorithms to local computation algorithms. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 653–664. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31594-7_55

    Chapter  Google Scholar 

  54. Mansour, Y., Vardi, S.: A local computation approximation scheme to maximum matching. In: Raghavendra, P., Raskhodnikova, S., Jansen, K., Rolim, J.D.P. (eds.) APPROX/RANDOM-2013. LNCS, vol. 8096, pp. 260–273. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40328-6_19

    Chapter  Google Scholar 

  55. Marko, S., Ron, D.: Distance approximation in bounded-degree and general sparse graphs. In: Díaz, J., Jansen, K., Rolim, J.D.P., Zwick, U. (eds.) APPROX/RANDOM-2006. LNCS, vol. 4110, pp. 475–486. Springer, Heidelberg (2006). doi:10.1007/11830924_43

    Chapter  Google Scholar 

  56. Mayer, A., Naor, S., Stockmeyer, L.: Local computations on static and dynamic graphs. In: Proceedings of the 3rd Israel Symposium on Theory and Computing Systems (1995)

    Google Scholar 

  57. Muthukrishnan, S., Strauss, M., Zheng, X.: Workload-optimal histograms on streams. Technical report 2005-19, DIMACS Technical Report (2005)

    Google Scholar 

  58. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6), 1259–1277 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  59. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local improvements. In: Proceedings of the 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 327–336 (2008)

    Google Scholar 

  60. Onak, K., Ron, D., Rosen, M., Rubinfeld, R.: A near-optimal sublinear-time algorithm for approximating the minimum vertex cover size. In: 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2012), Kyoto, January 2012

    Google Scholar 

  61. Orecchia, L., Allen Zhu, Z.: Flow-based algorithms for local graph clustering. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, 5–7 January 2014, pp. 1267–1286 (2014)

    Google Scholar 

  62. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time and a connection to distributed algorithms. Theor. Comput. Sci. 381(1–3), 183–196 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  63. Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. In: PODC, pp. 77–85 (1987)

    Google Scholar 

  64. Pettie, S.: Distributed algorithms for ultrasparse spanners and linear size skeletons. Distrib. Comput. 22(3), 147–166 (2010)

    Article  MATH  Google Scholar 

  65. Rubinfeld, R., Tamir, G., Vardi, S., Xie, N.: Fast local computation algorithms. In: Proceedings of the Innovations in Computer Science Conference (2011)

    Google Scholar 

  66. Sadakane, K., Grossi, R.: Squeezing succinct data structures into entropy bounds. In: ACM-SIAM Symposium on Discrete Algorithms, pp. 1230–1239 (2006)

    Google Scholar 

  67. Saks, M.E., Seshadhri, C.: Local monotonicity reconstruction. SIAM J. Comput. 39(7), 2897–2926 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  68. Sarlos, T., Benczur, A., Csalogany, K., Fogaras, D., Racz, B.: To randomize or not to randomize: space optimal summaries for hyperlink analysis. In: Proceedings of the 15th International Conference on World Wide Web, pp. 297–306 (2006)

    Google Scholar 

  69. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set algorithm for growth-bounded graphs. In: Proceedings of the 27th ACM Symposium on Principles of Distributed Computing, pp. 35–44 (2008)

    Google Scholar 

  70. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry breaking. In: Proceedings of the 29th ACM Symposium on Principles of Distributed Computing, pp. 257–266 (2010)

    Google Scholar 

  71. Spielman, D., Teng, S.: Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems. In: Proceedings of the 36th Annual ACM Symposium on the Theory of Computing, pp. 81–90 (2004)

    Google Scholar 

  72. Sudan, M., Trevisan, L., Vadhan, S.: Pseudorandom generators without the XOR lemma. J. Comput. Syst. Sci. 62(2), 236–266 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  73. Yekhanin, S.: Private information retrieval. Commun. ACM 53(4), 68–73 (2010)

    Article  MATH  Google Scholar 

  74. Yoshida, Y., Yamamoto, Y., Ito, H.: An improved constant-time approximation algorithm for maximum matchings. In: Proceedings of the 41st Annual ACM Symposium on the Theory of Computing, pp. 225–234 (2009)

    Google Scholar 

  75. Zhu, Z.A., Lattanzi, S., Mirrokni, V.: A local algorithm for finding well-connected clusters. In: Proceedings of the Thirtieth International Conference on Machine Learning (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronitt Rubinfeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rubinfeld, R. (2017). Can We Locally Compute Sparse Connected Subgraphs?. In: Weil, P. (eds) Computer Science – Theory and Applications. CSR 2017. Lecture Notes in Computer Science(), vol 10304. Springer, Cham. https://doi.org/10.1007/978-3-319-58747-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58747-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58746-2

  • Online ISBN: 978-3-319-58747-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics