Skip to main content

Koepke Machines and Satisfiability for Infinitary Propositional Languages

  • Conference paper
  • First Online:
Unveiling Dynamics and Complexity (CiE 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10307))

Included in the following conference series:

Abstract

We consider complexity theory for Koepke machines, also known as Ordinal Turing Machines (OTMs), and define infinitary complexity classes \(\infty \)-\(\mathbf {P}\) and \(\infty {\text {-}}\mathbf {NP}\) and the OTM analogue of the satisfiability problem, denoted by \(\infty {\text {-}}\mathrm {SAT}\). We show that \(\infty {\text {-}}\mathrm {SAT}\) is in \(\infty {\text {-}}\mathbf {NP}\) and \(\infty {\text {-}}\mathbf {NP}\)-hard (i.e., the problem is \(\infty {\text {-}}\mathbf {NP}\)-complete), but not OTM decidable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carl, M.: Towards a Church-Turing-Thesis for infinitary computation (2013) preprint. arXiv:1307.6599

  2. Carl, M.: Infinite time recognizability from random oracles and the recognizable jump operator. Computability (to appear)

    Google Scholar 

  3. Dawson, B.: Ordinal time Turing Computation. Ph.D. thesis, University of Bristol (2009)

    Google Scholar 

  4. Deolalikar, V., Hamkins, J.D., Schindler, R.: \(\mathbf{P}\ne \mathbf{NP}\cap \mathbf{co}{\text{-}}\mathbf{NP}\) for infinite time Turing machines. J. Log. Comput. 15(5), 577–592 (2005)

    Google Scholar 

  5. Hamkins, J.D., Lewis, A.: Infinite time turing machines. J. Symb. Log. 65(2), 567–604 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hamkins, J.D., Welch, P.D.: \(\mathbf{P}^f \ne \mathbf{NP}^f\) for almost all \(f\). Math. Log. Q. 49(5), 536–540 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Jensen, R.B., Karp, C.: Primitive recursive set functions. In: Axiomatic Set Theory. Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society held at the University of California, Los Angeles, California, 10 July–5 August, vol. XIII/I of Proceedings of Symposia in Pure Mathematics, pp. 143–176. American Mathematical Society (1971)

    Google Scholar 

  8. Kanamori, A.: The Higher Infinite. Large Cardinals in Set Theory from Their Beginnings. Springer Monographs in Mathematics, 2nd edn. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  9. Karp, C.: Languages with Expressions of Infinite Length. North-Holland, Amsterdam (1964)

    MATH  Google Scholar 

  10. Koepke, P.: Turing computations on ordinals. Bull. Symb. Log. 11(3), 377–397 (2005)

    Article  MATH  Google Scholar 

  11. Koepke, P.: Ordinal computability. In: Ambos-Spies, K., Löwe, B., Merkle, W. (eds.) CiE 2009. LNCS, vol. 5635, pp. 280–289. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03073-4_29

    Chapter  Google Scholar 

  12. Koepke, P., Seyfferth, B.: Ordinal machines and admissible recursion theory. Ann. Pure Appl. Log. 160, 310–318 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Löwe, B.: Space bounds for infinitary computation. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 319–329. Springer, Heidelberg (2006). doi:10.1007/11780342_34

    Chapter  Google Scholar 

  14. Rin, B.: The computational strengths of \(\alpha \)-tape infinite time turing machines. Ann. Pure Appl. Log. 165(9), 1501–1511 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Schindler, R.: \(\mathbf{P}\ne \mathbf{NP}\) infinite time turing machines. Monatsh. Math. 139, 335–340 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Winter, J.: Space complexity in infinite time Turing machines. Master’s thesis, Universiteit van Amsterdam. ILLC Publications MoL-2007-14 (2007)

    Google Scholar 

  17. Winter, J.: Is P = PSPACE for Infinite time turing machines? In: Archibald, M., Brattka, V., Goranko, V., Löwe, B. (eds.) ILC 2007. LNCS, vol. 5489, pp. 126–137. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03092-5_10

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benedikt Löwe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Carl, M., Löwe, B., Rin, B.G. (2017). Koepke Machines and Satisfiability for Infinitary Propositional Languages. In: Kari, J., Manea, F., Petre, I. (eds) Unveiling Dynamics and Complexity. CiE 2017. Lecture Notes in Computer Science(), vol 10307. Springer, Cham. https://doi.org/10.1007/978-3-319-58741-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-58741-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-58740-0

  • Online ISBN: 978-3-319-58741-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics