Skip to main content

Intermittency-Driven Complexity in Signal Processing

  • Chapter
  • First Online:
Complexity and Nonlinearity in Cardiovascular Signals

Abstract

In this chapter, we first discuss the main motivations that are causing an increasing interest of many research fields and the interdisciplinary effort of many research groups towards the new paradigm of complexity. Then, without claiming to include all possible complex systems, which is much beyond the scope of this review, we introduce a possible definition of complexity. Along this line, we also introduce our particular approach to the analysis and modeling of complex systems. This is based on the ubiquitous observation of metastability of self-organization, which triggers the emergence of intermittent events with fractal statistics. This condition, named fractal intermittency, is the signature of a particular class of complexity here referred to as Intermittency-Driven Complexity (IDC). Limiting to the IDC framework, we give a survey of some recently developed statistical tools for the analysis of complex behavior in multi-component systems and we review recent applications to real data, especially in the field of human physiology. Finally, we give a brief discussion about the role of complexity paradigm in human health and wellness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Cooperative dynamics in multi-component systems always need an external energy source to sustain self-organization, i.e., the formation of coherent structures from the disordered background. However, this does not mean that the external forcing, even if pumping energy into the system, can control the inner mechanisms triggering the emergence of self-organizing behavior. Thus, the external forcing is not a master explicitly controlling the parameter of self-organized states, such as time and space scales, but only an external energy supply.

  2. 2.

    Roughly speaking, the emergence of self-similarity is probably the most efficient way to carry information from the small to the large scales and this could be the reason for the emergence of this intermediate organizing levels filling the gap from the microscopic to the macroscopic scales. However, this intriguing problem is not well established and should deserve further investigations, which are beyond the scope of this chapter.

  3. 3.

    Surprisingly, even in the presence of the renewal condition, a complex system can display long-range correlation functions, and the slow power-law decay of the correlation is connected to the inverse power-law decay in the statistical distribution of the random life-times [26].

  4. 4.

    It is rather intuitive that the fast transition events should always be associated with a memory drop (low predictability) in the system itself, so that the events should always satisfy the renewal condition. However, this is not experimentally verified in all complex signals. In spite of this, we are convinced that FI typically involves renewal events and that the renewal process driving the complexity could be sometimes hidden below a mixture of different contributions to the intermittency generated by the system, including also the presence of noisy, secondary events. However, it is possible that an extension of the renewal condition to a slightly non-renewal condition could be necessary in order to derive more robust models and algorithms for data analysis based on the FI and IDC paradigms.

  5. 5.

    This complex behavior is also known as Temporal Complexity [4347], a term underlining the difference of the intermittency-based complexity, focused on the study of the temporal structure of self-organization, with the more known approach focused on the topological and spatial features of complexity (e.g., the degree distribution in a complex network, the avalanche size distribution) [4750].

  6. 6.

    For further details about the RTP detection algorithm, we refer the reader to [79] and to [26, 28] where our implementation is explained.

  7. 7.

    It is also possible to characterize the point process N(t) by using directly the k-point statistical distribution of N(t) itself. The statistical features of N(t) and \(\big\{T_{n}\big\}\) are clearly linked to each other.

References

  1. Segev, R., Goodhouse, J., Puchalla, J., Berry, M.J.: Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nat. Neurosci. 7(10), 1154–1161 (2004)

    Article  CAS  PubMed  Google Scholar 

  2. Stetter, O., Battaglia, D., Soriano, J., Geisel, T.: Model-free reconstruction of excitatory neuronal connectivity from calcium imaging signals. PLoS Comput. Biol. 8(8), e1002653 (2012)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Orlandi, J.G., Soriano, J., Alvarez-Lacalle, E., Teller, S., Casademunt, J.: Noise focusing and the emergence of coherent activity in neuronal cultures. Nat. Phys. 9(9), 582–590 (2013)

    Article  CAS  Google Scholar 

  4. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  Google Scholar 

  5. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  Google Scholar 

  6. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003)

    Article  Google Scholar 

  7. Barrat, A., Barthélemy, M., Vespignani, A.: Dynamical Processes on Complex Networks. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  8. Mora, T., Bialek, W.: Are biological systems poised at criticality? J. Stat. Phys. 144, 268–302 (2011)

    Article  Google Scholar 

  9. Boccaletti, S., Bianconi, G., Criado, R., Genio, C.I.D., Gómez-Gardenes, J., Romance, M., Sendina-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014)

    Article  Google Scholar 

  10. Kenett, D.Y., Perc, M., Boccaletti, S.: Networks of networks - an introduction. Chaos Solitons Fractals 80, 1–6 (2015)

    Article  Google Scholar 

  11. Paradisi, P., Kaniadakis, G., Scarfone, A.M. (eds.): The Emergence of Self-Organization in Complex Systems. Elsevier, Amsterdam (2015). Special Issue: Chaos Solitons Fractals 81(B), 407–588

    Google Scholar 

  12. Paradisi, P., Kaniadakis, G., Scarfone, A.M.: The emergence of self-organization in complex systems - preface. Chaos Solitons Fractals 81(Part B), 407–411 (2015)

    Google Scholar 

  13. Paradisi, P., Allegrini, P.: Scaling law of diffusivity generated by a noisy telegraph signal with fractal intermittency. Chaos Solitons Fractals 81(Part B), 451–462 (2015)

    Google Scholar 

  14. Zanin, M., Papo, D., Sousa, P.A., Menasalvas, E., Nicchi, A., Kubik, E., Boccaletti, S.: Combining complex networks and data mining: why and how. Phys. Rep. 635, 1–44 (2016)

    Article  Google Scholar 

  15. Ott, E.: Chaos in Dynamical Systems, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  16. Sornette, D.: Critical Phenomena in Natural Sciences, 2nd edn. Springer Series in Synergetics. Springer, Berlin (2006)

    Google Scholar 

  17. Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  CAS  Google Scholar 

  18. Paradisi, P., Chiarugi, D., Allegrini, P.: A renewal model for the emergence of anomalous solute crowding in liposomes. BMC Syst. Biol. 9(Suppl. 3), s7 (2015)

    Article  PubMed Central  PubMed  Google Scholar 

  19. Paradisi, P., Cesari, R., Donateo, A., Contini, D., Allegrini, P.: Scaling laws of diffusion and time intermittency generated by coherent structures in atmospheric turbulence. Nonlinear Process. Geophys. 19, 113–126 (2012). Corrigendum. Nonlinear Process. Geophys. 19, 685 (2012)

    Google Scholar 

  20. Paradisi, P., Cesari, R., Donateo, A., Contini, D., Allegrini, P.: Diffusion scaling in event-driven random walks: an application to turbulence. Rep. Math. Phys. 70, 205–220 (2012)

    Article  Google Scholar 

  21. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2010)

    Book  Google Scholar 

  22. Paradisi, P., Cesari, R., Mainardi, F., Maurizi, A., Tampieri, F.: A generalized Fick’s law to describe non-local transport effects. Phys. Chem. Earth 26(4), 275–279 (2001)

    Article  Google Scholar 

  23. Pramukkul, P., Svenkeson, A., Grigolini, P., Bologna, M., West, B.: Complexity and the fractional calculus. Adv. Math. Phys. 2013, 498789 (2013)

    Google Scholar 

  24. Paradisi, P.: Fractional calculus in statistical physics: the case of time fractional diffusion equation. Commun. Appl. Ind. Math. (2015). doi:10.1685/journal.caim.530

    Google Scholar 

  25. Pagnini, G., Paradisi, P.: A stochastic solution with gaussian stationary increments of the symmetric space-time fractional diffusion equation. Fract. Calc. Appl. Anal. 19(2), 408–440 (2016)

    Article  Google Scholar 

  26. Allegrini, P., Menicucci, D., Bedini, R., Fronzoni, L., Gemignani, A., Grigolini, P., West, B.J., Paradisi, P.: Spontaneous brain activity as a source of ideal 1/f noise. Phys. Rev. E 80(6) Pt 1, 061914 (2009)

    Google Scholar 

  27. Allegrini, P., Menicucci, D., Bedini, R., Gemignani, A., Paradisi, P.: Complex intermittency blurred by noise: theory and application to neural dynamics. Phys. Rev. E 82(1) Pt 2, 015103 (2010)

    Google Scholar 

  28. Allegrini, P., Paradisi, P., Menicucci, D., Gemignani, A.: Fractal complexity in spontaneous EEG metastable-state transitions: new vistas on integrated neural dynamics. Front. Physiol. 1, 128 (2010). doi:10.3389/fphys.2010.00128

    Article  PubMed Central  PubMed  Google Scholar 

  29. Allegrini, P., Paradisi, P., Menicucci, D., Bedini, R., Gemignani, A., Fronzoni, L.: Noisy cooperative intermittent processes: from blinking quantum dots to human consciousness. J. Phys. Conf. Ser. 306(1), 012027 (2011)

    Article  Google Scholar 

  30. Paradisi, P., Allegrini, P., Gemignani, A., Laurino, M., Menicucci, D., Piarulli, A.: Scaling and intermittency of brain events as a manifestation of consciousness. AIP Conf. Proc. 1510, 151–161 (2013)

    Article  Google Scholar 

  31. Allegrini, P., Paradisi, P., Menicucci, D., Laurino, M., Bedini, R., Piarulli, A., Gemignani, A.: Sleep unconsciousness and breakdown of serial critical intermittency: new vistas on the global workspace. Chaos Solitons Fractals 55, 32–43 (2013)

    Article  Google Scholar 

  32. Allegrini, P., Paradisi, P., Menicucci, D., Laurino, M.,, Piarulli, A., Gemignani, A.: Self-organized dynamical complexity in human wakefulness and sleep: different critical brain-activity feedback for conscious and unconscious states. Phys. Rev. E 92(3), 032808 (2015)

    Article  CAS  Google Scholar 

  33. Cox, D.R.: Renewal Theory. Methuen, London (1962)

    Google Scholar 

  34. Akin, O.C., Paradisi, P., Grigolini, P.: Periodic trend and fluctuations: the case of strong correlation. Phys. A 371, 157–170 (2006)

    Article  Google Scholar 

  35. Paradisi, P., Grigolini, P., Bianco, S., Akin, O.C.: Renewal aging in non-homogeneous poisson processes with periodic rate modulation. Int. J. Bifurcation Chaos 18(9), 2681–2691 (2008)

    Article  Google Scholar 

  36. Paradisi, P., Cesari, R., Grigolini, P.: Superstatistics and renewal critical events. Cent. Eur. J. Phys. 7, 421–431 (2009)

    Google Scholar 

  37. Akin, O.C., Paradisi, P., Grigolini, P.: Perturbation-induced emergence of poisson-like behavior in non-poisson systems. J. Stat. Mech. Theory Exp. 2009, P01013 (2009)

    Google Scholar 

  38. Bianco, S., Grigolini, P., Paradisi, P.: A fluctuating environment as a source of periodic modulation. Chem. Phys. Lett. 438(4–6), 336–340 (2007)

    Article  CAS  Google Scholar 

  39. Paradisi, P., Cesari, R., Contini, D., Donateo, A., Palatella, L.: Characterizing memory in atmospheric time series: an alternative approach based on renewal theory. Eur. Phys. J. Spec. Top. 174, 207–218 (2009)

    Article  Google Scholar 

  40. Paradisi, P., Allegrini, P., Barbi, F., Bianco, S., Grigolini, P.: Renewal, modulation and blinking quantum dots. AIP Conf. Proc. 800(1), 92–97 (2005)

    Article  Google Scholar 

  41. Bianco, S., Grigolini, P., Paradisi, P.: Fluorescence intermittency in blinking quantum dots: renewal or slow modulation? J. Chem. Phys. 123(17), 174704 (2005)

    Article  CAS  PubMed  Google Scholar 

  42. Allegrini, P., Barbi, F., Grigolini, P., Paradisi, P.: Renewal, modulation, and superstatistics in times series. Phys. Rev. E 73(4), 046136 (2006)

    Article  CAS  Google Scholar 

  43. Grigolini, P.: Emergence of biological complexity: criticality, renewal and memory. Chaos Solitons Fractals 81(Part B), 575–88 (2015)

    Google Scholar 

  44. Beig, M.T., Svenkeson, A., Bologna, M., West, B.J., Grigolini, P.: Critical slowing down in networks generating temporal complexity. Phys. Rev. E 91, 012907 (2015)

    Article  CAS  Google Scholar 

  45. Turalska, M., West, B.J., Grigolini, P.: Temporal complexity of the order parameter at the phase transition. Phys. Rev. E 83, 061142 (2011)

    Article  CAS  Google Scholar 

  46. Grigolini, P., Chialvo, D.R.: Emergent critical brain dynamics - editorial. Chaos Solitons Fractals 55(1–2), 1–120 (2013)

    Article  Google Scholar 

  47. Grigolini, P., Chialvo, D.R. (eds.): Emergent Critical Brain Dynamics. Elsevier, Amsterdam (2013). Special Issue Chaos Solitons Fractals 55, 1–120

    Google Scholar 

  48. Beggs, J.M., Plenz, D.: Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003)

    CAS  PubMed  Google Scholar 

  49. Plenz, D., Thiagarjan, T.C.: The organizing principles of neuronal avalanches: cell assemblies in the cortex? Trends Neurosci. 30, 101–110 (2007)

    Article  CAS  PubMed  Google Scholar 

  50. Fraiman, D., Balenzuela, P., Foss, J., Chialvo, D.R.: Ising-like dynamics in large-scale functional brain networks. Phys. Rev. E 79, 061922 (2009)

    Article  CAS  Google Scholar 

  51. Solé, R.V., Bascompte, J.: Self-Organization in Complex Ecosystems. Princeton University Press, Princeton (2006)

    Google Scholar 

  52. Gerstner, W., Kistler, W.M.: Spiking Neuron Models. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  53. Stefani, F.D., Hoogenboom, J.P., Barkai, E.: Beyond quantum jumps: blinking nanoscale light emitters. Phys. Today 62, 34–39 (2009)

    Article  CAS  Google Scholar 

  54. Maillart, T., Sornette, D., Frei, S., Duebendorfer, T., Saichev, A.: Quantification of deviations from rationality with heavy tails in human dynamics. Phys. Rev. E 83, 056101 (2011)

    Article  CAS  Google Scholar 

  55. Laureys, S., Tononi, G. (eds.): The Neurology of Consciousness. Elsevier, Amsterdam (2009)

    Google Scholar 

  56. Allegrini, P., Paradisi, P., Menicucci, D., Gemignani, A.: Is temporal scaling at the basis of allometry? comment on ‘physiologic time: a hypothesis’ by west and west. Phys. Life. Rev. 10, 233–234 (2013)

    Article  PubMed  Google Scholar 

  57. Fingelkurts, A.A., Fingelkurts, A.A., Neves, C.F.H.: Brain-mind operational architectonics imaging: technical and methodological aspects. Open Neuroimaging J. 2, 73–93 (2008)

    Article  Google Scholar 

  58. Fingelkurts, A.A., Fingelkurts, A.A., Neves, C.F.H.: Natural world physical, brain operational, and mind phenomenal space–time. Phys. Life Rev. 7, 195–249 (2010)

    Article  PubMed  Google Scholar 

  59. Fingelkurts, A.A., Fingelkurts, A.A., Neves, C.F.H.: Consciousness as a phenomenon in the operational architectonics of brain organization: criticality and self-organization considerations. Chaos Solitons Fractals 55, 13–31 (2013)

    Article  Google Scholar 

  60. Saichev, A., Sornette, D.: Distribution of inter-earthquake times explained. Phys. Rev. Lett. 97, 078501 (2006)

    Article  CAS  PubMed  Google Scholar 

  61. Wong, I.Y., Gardel, M.L., Reichman, D.R., Weeks, E.R., Valentine, M.T., Bausch, A.R., Weitz, D.A.: Anomalous diffusion probes microstructure dynamics of entangled f-actin networks. Phys. Rev. Lett. 92, 178101 (2004)

    Article  CAS  PubMed  Google Scholar 

  62. Weigel, A.V., Simon, B., Tamkun, M.M., Krapf, D.: Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc. Natl. Acad. Sci. USA 108, 6438–6443 (2011)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  63. Jeon, J.H., Tejedor, V., Burov, S., Barkai, E., Selhuber-Unkel, C., Berg-Sørensen, K., Oddershede, L., Metzler, R.: In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys. Rev. Lett. 106, 048103 (2011)

    Article  CAS  PubMed  Google Scholar 

  64. Metzler, R., Jeon, J.H., Cherstvy, A.G., Barkai, E.: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16(4), 24128–24164 (2014)

    Article  CAS  PubMed  Google Scholar 

  65. Rabinovich, M.I., Huerta, R., Afraimovich, V.S.: Dynamics of sequential decision making. Phys. Rev. Lett. 97, 188103 (2006)

    Article  CAS  PubMed  Google Scholar 

  66. Rabinovich, M.I., Huerta, R., Varona, P., Afraimovich, V.S.: Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4(5), e1000072 (2008)

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Rabinovich, M.I., Afraimovich, V.S., Bick, C., Varona, P.: Information flow dynamics in the brain. Phys. Life Rev. 9, 51–73 (2012)

    Article  PubMed  Google Scholar 

  68. Bhadola, P., Deo, N.: Study of RNA structures with a connection to random matrix theory. Chaos Solitons Fractals 81(Part B), 542–550 (2015)

    Google Scholar 

  69. Furstenberg, F., Dolgushev, M., Blumen, A.: Exploring the applications of fractional calculus: hierarchically built semiflexible polymers. Chaos Solitons Fractals 81(Part B), 527–533 (2015)

    Google Scholar 

  70. Basak, U.K., Datta, A.: Fractal dimension and complexity in the long-term dynamics of a monomolecular layer. Chaos Solitons Fractals 81(Part B), 534–541 (2015)

    Google Scholar 

  71. Gatherer, D.: So what do we really mean when we say that systems biology is holistic? BMC Syst. Biol. 4, 22 (2010)

    Article  PubMed Central  PubMed  Google Scholar 

  72. Geneston, E., Tuladhar, R., Beig, M.T., Bologna, M., Grigolini, P.: Ergodicity breaking and localization. Phys. Rev. E 94, 012136 (2016)

    Article  CAS  PubMed  Google Scholar 

  73. Bassingthwaighte, J.B., Liebovitch, L.S., West, B.J.: Fractal Physiology. Springer, Berlin (1994)

    Book  Google Scholar 

  74. Goldberger, A., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.C., Peng, C.-K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. USA 99(Suppl. 1), 2466–2472 (2002)

    Article  PubMed Central  PubMed  Google Scholar 

  75. Kolb, B., Whishaw, I.Q.: Fundamentals of Human Neuropsychology, 6th edn. Worth Publishers, New York (2008)

    Google Scholar 

  76. Cakir, T., Alsan, S., Selma, S., Hale, A., Ata, U., Kutlu, O.: Reconstruction and flux analysis of coupling between metabolic pathways of astrocytes and neurons: application to cerebral hypoxia. Theor. Biol. Med. Model. 4(1), 48 (2007)

    Article  CAS  PubMed  Google Scholar 

  77. Sofroniew, M.V., Vinters, H.V.: Astrocytes: biology and pathology, Acta Neuropathol. 119(1), 7–35 (2010)

    Article  PubMed  Google Scholar 

  78. Fingelkurts, A.A., Fingelkurts, A.A.: Operational architectonics of the human brain biopotential field: towards solving the mind-brain problem. Brain Mind 2, 261–296 (2001)

    Article  Google Scholar 

  79. Kaplan, A.Y., Fingelkurts, A.A., Fingelkurts, A.A., Borisov, B.S., Darkhovsky, B.S.: Nonstationary nature of the brain activity as revealed by EEG/EMG: methodological, practical and conceptual challenges. Signal Process. 85, 2190–2212 (2005)

    Article  Google Scholar 

  80. Zipes, D., Jalife, J.: Cardiac Electrophysiology: From Cell to Bedside, 6th edn. Saunders, Elsevier, Philadelphia (2014)

    Google Scholar 

  81. Billman, G.: Heart rate variability - a historical perspective. Front. Physiol. 2, 86 (2011). doi:10.3389/fphys.2011.00086

    Article  PubMed Central  PubMed  Google Scholar 

  82. Allegrini, P., Grigolini, P., Hamilton, P., Palatella, L., Raffaelli, G.: Memory beyond memory in heart beating, a sign of a healthy physiological condition. Phys. Rev. E 65(4), 041926 (2002)

    Article  CAS  Google Scholar 

  83. Tang, L., Lv, H., Yang, F., Yu, L.: Complexity testing techniques for time series data: a comprehensive literature review. Chaos Solitons Fractals 81, 117–135 (2015)

    Article  Google Scholar 

  84. Allegrini, P., Grigolini, P., Palatella, L.: Intermittency and scale-free networks: a dynamical model for human language complexity. Chaos Solitons Fractals 20, 95–105 (2004)

    Article  Google Scholar 

  85. Allegrini, P., Balocchi, R., Chillemi, S., et al.: Long- and short-time analysis of heartbeat sequences: correlation with mortality risk in congestive heart failure patients. Phys. Rev. E 67(6), 062901 (2003)

    Article  CAS  Google Scholar 

  86. Maestri, R., Pinna, G.D., Allegrini, P., et al.: Linear and non-linear indices of heart rate variability in chronic heart failure: mutual interrelationships and prognostic value. Comput. Cardiol. 32, 981–984 (2005)

    Google Scholar 

  87. Maestri, R., Pinna, G.D., Accardo, A., et al.: Nonlinear indices of heart rate variability in chronic heart failure patients: redundancy and comparative clinical value. J. Cardiovasc. Electrophysiol. 18(4), 425–433 (2007)

    Article  PubMed  Google Scholar 

  88. Ashkenazy, Y., Ivanov, P., Havlin, S., Peng, C., Goldberger, A., Stanley, H.: Magnitude and sign correlations in heartbeat fluctuations. Phys. Rev. Lett. 86(9), 1900–1903 (2001)

    Article  CAS  PubMed  Google Scholar 

  89. Ivanov, P., Amaral, L.N., Goldberger, A., Havlin, S., Rosenblum, M., Stanley, H., Struzik, Z.: From 1/f noise to multifractal cascades in heartbeat dynamics. Chaos 11(3), 641–652 (2001)

    Article  PubMed  Google Scholar 

  90. Chang, M., Peng, C., Stanley, H.: Emergence of dynamical complexity related to human heart rate variability. Phys. Rev. E 90(6), 062806 (2014)

    Article  CAS  Google Scholar 

  91. Valenza, G., Allegrini, P., Lanatá, A., Scilingo, E.P.: Dominant Lyapunov exponent and approximate entropy in heart rate variability during emotional visual elicitation. Front. Neuroeng. 5, 3 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  92. Pahlm, O., Sornmo, L.: Software QRS detection in ambulatory monitoring - a review. Med. Biol. Eng. Comput. 22, 289–297 (1984)

    Article  CAS  PubMed  Google Scholar 

  93. Stanley, H.E.: Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1987)

    Google Scholar 

  94. Tagliazucchi, E., Balenzuela, P., Fraiman, D., Chialvo, D.R.: Criticality in large-scale brain FMRI dynamics unveiled by a novel point process analysis. Front. Physiol. 3, 15 (2012)

    Article  PubMed Central  PubMed  Google Scholar 

  95. Allegrini, P., Bellazzini, J., Bramanti, G., Ignaccolo, M., Grigolini, P., Yang, J.: Scaling breakdown: a signature of aging. Phys. Rev. E 66, 015101 (2002)

    Article  CAS  Google Scholar 

  96. Allegrini, P., Barbi, F., Grigolini, P., Paradisi, P.: Aging and renewal events in sporadically modulated systems. Chaos Solitons Fractals 34, 11–18 (2007)

    Article  Google Scholar 

  97. Montroll, E.W.: Random walks on lattices. Proc. Symp. Appl. Math. Am. Math. Soc. 16, 193–220 (1964)

    Article  Google Scholar 

  98. Montroll, E.W., Weiss, G.H.: Random walks on lattices. II. J. Math. Phys. 6, 167–181 (1965)

    Article  Google Scholar 

  99. Weiss, G.H., Rubin, R.J.: Random walks: theory and selected applications. Adv. Chem. Phys. 52, 363–505 (1983)

    Article  CAS  Google Scholar 

  100. Scafetta, N., Grigolini, P.: Scaling detection in time series: diffusion entropy analysis. Phys. Rev. E 66, 036130 (2002)

    Article  CAS  Google Scholar 

  101. Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of dna nucleotides. Phys. Rev. E 49, 1685–1689 (1994)

    Article  CAS  Google Scholar 

  102. Gong, P., Nikolaev, A.R., van Leeuwen, C.: Intermittent dynamics underlying the intrinsic fluctuations of the collective synchronization patterns in electrocortical activity. Phys. Rev. E 76(1), 011904 (2007)

    Article  CAS  Google Scholar 

  103. Raichle, M.E., Leod, A.M.M., Snyder, A.Z., Powers, W.J., Gusnard, D.A., Shulman, G.L.: A default mode of brain function. Proc. Natl. Acad. Sci. USA 98, 676–682 (2001)

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Beckmann, C.F., Luca, M.D., Devlin, J.T., Smith, S.N.: Investigation into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 360, 1001–1013 (2005)

    Article  PubMed Central  PubMed  Google Scholar 

  105. Wolf, M., Varigos, G., Hunt, D., Sloman, J.: Sinus arrhythmia in acute myocardial infarction. Med. J. Aust. 2, 52–53 (1978)

    CAS  PubMed  Google Scholar 

  106. T. F. of the European Society of Cardiology, the North American Society of Pacing, and Electrophysiology: Heart rate variability: standards of measurement, physiological interpretation, and clinical use. Circulation 93, 1043–1065 (1996)

    Google Scholar 

  107. Kleiger, R., Miller, J., Bigger, J., Moss, A.: Decreased heart rate variability and its association with increased mortality after acute myocardial infarction. Am. J. Cardiol. 59, 256–262 (1987)

    Article  CAS  PubMed  Google Scholar 

  108. Peng, C., Havlin, S., Stanley, H., Goldberger, A.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos 5, 82–87 (1995)

    Article  CAS  PubMed  Google Scholar 

  109. Tulppo, M., Kiviniemi, A., Hautala, A., Kallio, M., Seppanen, T., Makikallio, T., Huikuri, H.: Physiological background of the loss of fractal heart rate dynamics. Circulation 112, 314–319 (2005)

    Article  PubMed  Google Scholar 

  110. Iyengar, N., Peng, C., Morin, R., Goldberger, A., Lipsitz, L.: Age-related alterations in the fractal scaling of cardiac interbeat interval dynamics. Am. J. Physiol. 271, R1078–R1084 (1996)

    CAS  PubMed  Google Scholar 

  111. Vikman, S., Makikallio, T., Yli-Mayry, S., Pikkujamsa, S., Koivisto, A., Reinikainen, P., Airaksinen, K., Huikuri, H.: Altered complexity and correlation properties of R-R interval dynamics before the spontaneous onset of paroxysmal atrial fibrillation. Circulation 100, 2079–2084 (1999)

    Article  CAS  PubMed  Google Scholar 

  112. Huikuri, H., Poutiainen, A., Makikallio, T., Koistinen, M., Airaksinen, K., Mitrani, R., Myerburg, R., Castellanos, A.: Dynamic behaviour and autonomic regulation of ectopic atrial pacemakers. Circulation 100, 1416–1422 (1999)

    Article  CAS  PubMed  Google Scholar 

  113. Makikallio, T., Hoiber, S., Kober, L., Torp-Pedersen, C., Peng, C., Goldberger, A., Huikuri, H.: Fractal analysis of heart rate dynamics as a predictor of mortality in patients with depressed left ventricular function after acute myocardial infarction. Am. J. Cardiol. 83, 836–839 (1999)

    Article  CAS  PubMed  Google Scholar 

  114. Jokinen, V., Tapanainen, J., Seppanen, T., Huikuri, H.: Temporal changes and prognostic significance of measures of heart rate dynamics after acute myocardial infarction in the beta-blocking era. Am. J. Cardiol. 92, 907–912 (2003)

    Article  PubMed  Google Scholar 

  115. Perkiomaki, J., Zareba, W., Ruta, J., Dubner, S., Madoery, C., Deedwania, P., Karcz, M., de Luna Bayes, A., Investigators, I.: Fractal and complexity measures of heart rate dynamics after acute myocardial infarction. Am. J. Cardiol. 88, 777–781 (2001)

    Article  CAS  PubMed  Google Scholar 

  116. Maestri, R., Pinna, G., Porta, A., Balocchi, R., Sassi, R., Signorini, M., Dudziak, M., Raczak, G.: Assessing nonlinear properties of heart rate variability from short-term recordings: are these measurements reliable? Physiol. Meas. 28, 1067–1077 (2007)

    Article  PubMed  Google Scholar 

  117. Perkiomaki, J.: Heart rate variability and non-linear dynamics in risk stratification. Front. Physiol. 2, 81 (2011). doi:10.3389/fphys.2011.00081

    PubMed Central  PubMed  Google Scholar 

  118. Federoff, H.J., Gostin, L.O.: Evolving from reductionism to holism: is there a future for systems medicine? J. Am. Med. Assoc. 302(9), 994–996 (2009)

    Article  CAS  Google Scholar 

  119. Valenza, G., Toschi, N., Barbieri, R. (eds.): Uncovering Brain–Heart Information Through Advanced Signal and Image Processing. The Royal Society Publishers, London (2016). Theme Issue - Philos. Trans. R. Soc. A 374(2067)

    Google Scholar 

  120. Valenza, G., Toschi, N., Barbieri, R.: Introduction: uncovering brain–heart information through advanced signal and image processing. Philos. Trans. R. Soc. A 374(2067), 20160020 (2016)

    Article  CAS  Google Scholar 

  121. Valenza, G., Greco, A., Gentili, C., Lanata, A., Sebastiani, L., Menicucci, D., Gemignani, A., Scilingo, E.P.: Combining electroencephalographic activity and instantaneous heart rate for assessing brain–heart dynamics during visual emotional elicitation in healthy subjects. Philos. Trans. R. Soc. A 374(2067), 20150176 (2016)

    Article  Google Scholar 

  122. Schulz, S., Bolz, M., Bar, K.-J., Voss, A.: Central and autonomic nervous system coupling in schizophrenia. Philos. Trans. R. Soc. A 374(2067), 20150178 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Paradisi .

Editor information

Editors and Affiliations

Appendix: Diffusion Entropy and Detrended Fluctuation Analysis

Appendix: Diffusion Entropy and Detrended Fluctuation Analysis

Given a diffusive variable X(t); t = 1, 2,  [e.g., the event-driven random walks of the EDDiS algorithm, Eq. (6.6)], we are interested in evaluating the self-similarity index δ of the PDF, defined in Eq. (6.7), and the second moment scaling H, defined in Eq. (6.8). δ and H are evaluated by means of the Diffusion Entropy (DE) analysis [13, 20, 100] and of the Detrended Fluctuation Analysis (DFA) [101], respectively.

1.1 Diffusion Entropy

Given the PDF P(x, t), the DE is defined as the Shannon entropy of the diffusion process:

$$\displaystyle{ S(\Delta t) \equiv -\int _{-\infty }^{+\infty }p(\Delta x,\Delta t)\ln p(\Delta x,\Delta t)d\Delta x\, }$$
(6.11)

where \(\Delta t\) here denotes a time lag and not the absolute laboratory time. Using the self-similarity condition (6.7), it is easy to prove that

$$\displaystyle{ S(t) =\delta \ln \Delta t + S_{{\ast}}\, }$$
(6.12)

where S = − + F(x)lnF(x)dx. Notice that the scaling is in fact asymptotic, namely it is only exact for t, and an effective time T can be introduced as an additional fitting parameter:

$$\displaystyle{ S(\Delta t) =\delta \ln (\Delta t + T_{{\ast}}) + S_{{\ast}}. }$$
(6.13)

It is possible to estimate δ by considering the graph \((\Delta t,S(\Delta t))\) in a log-lin plot and then fitting Eq. (6.13) to the data.

The computation of \(S(\Delta t)\) requires the evaluation of the PDF \(P(x,\Delta t)\). This is done by considering a moving window of length \(\Delta t\), so that the set of pseudo-trajectories X r (k) = X(r + k) − X(r), with \(0 \leq k \leq \Delta t\), r = 1, 2, , is considered. The pseudo-trajectories all start from X r (0) = 0, and, for each \(\Delta t\), it is possible to evaluate the histogram \(P(x,\Delta t)\) of the sequence \(X_{1}(\Delta t),X_{2}(\Delta t),\ldots\) and, then, the DE \(S(\Delta t)\).

1.2 Detrended Fluctuation Analysis

Given the diffusive variable X(t); t = 1, 2, , the DFA essentially estimates the second moment of a proper detrended time series \(X(t) -\overline{X}(t)\). The detrending can be done with a n-order polynomial function and the most simple algorithm uses a linear detrending by a least-squares straight line fit [101]. The DFA algorithm works as follows: (i) for each discrete time L, the time series X(t) is split into not-overlapping time windows of length L: [kL + 1, kL + L], k = 0, 1, ; (iii) for each time window [kL + 1, kL + L] the local trend is evaluated with a least-squares straight line fit: \(\overline{X}_{k,L}(t) = a_{_{k,L}}t + b_{_{k,L}};\ kL <t \leq (k + 1)L\); (iii) the fluctuation is derived in the usual way: \(\widetilde{X}_{k,L}(t) = X(t) -\overline{X}_{k,L}(t) = X(t) - a_{_{k,L}}t - b_{_{k,L}};\ kL <t \leq (k + 1)L\); (iv) the mean-square deviation of the fluctuation is calculated over every window:

$$\displaystyle{ F^{2}(k,L) = \frac{1} {L}\sum _{t=kL+1}^{(k+1)L}\widetilde{X}_{ k,L}^{2}(t) = \frac{1} {L}\sum _{t=kL+1}^{(k+1)L}\left (X(t) -\overline{X}_{ k,L}(t)\right )^{2}\; }$$
(6.14)

and, finally, averaged over all the time windows, thus getting F 2(L).

In the case of a self-similar process, it results: \(F(L) \sim L^{^{H} }\). The parameter H can be derived by a linear fitting applied to the function z = Hy + C, with z = log(F(L)) and y = log(L). The DFA output is H = 0. 5 for the case of uncorrelated (white) noise (e.g., Brownian motion), where the integrated process X(t) display the typical Gaussian PDF G(x, t) with so-called normal scaling of the variance: 〈X 2〉(t) ∼ t. H ≠ 0. 5 is denoted as anomalous scaling, is a signature of long-range (power-law) correlations and, thus, cooperation and complexity. In particular, H < 0. 5, also denoted as subdiffusion, corresponds to a anti-correlated (anti-persistent) signal, while H > 0. 5, also denoted as superdiffusion, corresponds to a positively correlated (persistent) signal.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Paradisi, P., Allegrini, P. (2017). Intermittency-Driven Complexity in Signal Processing. In: Barbieri, R., Scilingo, E., Valenza, G. (eds) Complexity and Nonlinearity in Cardiovascular Signals. Springer, Cham. https://doi.org/10.1007/978-3-319-58709-7_6

Download citation

Publish with us

Policies and ethics